A man sold a chair and a table together for Rs.1520 thereby making a profit of 25% on the chair and 10% on table. By selling them together for Rs.1535 he would have made a profit of 10% on the chair and 25% on the table. Find the cost price of each.
Last updated date: 19th Mar 2023
•
Total views: 308.1k
•
Views today: 7.86k
Answer
308.1k+ views
Hint: Try to find the selling price of one chair as well as one table.
Let the total price of one chair be Rs. x and that of one table to be Rs. Y.
Now it is given to us that Profit on a chair = 25%
$\therefore $ Selling Price of one chair= x+$\frac{{25x}}{{100}} = \frac{{125x}}{{100}}$
Now again we have given that Profit on a table =10%
$\therefore $Selling price of one table=y+$\frac{{10y}}{{100}} = \frac{{110y}}{{100}}$
Now according to the given condition we have given that the sum of the selling price of one chair and one table is 1520.
$\therefore $$\frac{{125x}}{{100}}$+$\frac{{110y}}{{100}}$=1520
Now since the denominator is same so we can add our numerators and on doing the cross multiplication, we have
$ \Rightarrow $ 125x+110y=152000
And hence on further simplification, we have
25x+22y=30400…………………(i)
Now according to the question if the profit on a chair is 10% and on a table is 25%
Then the total selling price is Rs.1535.
$\therefore $$\left( {x + \frac{{10x}}{{100}}} \right) + \left( {y + \frac{{25y}}{{100}}} \right) = 1535$
And hence again on taking the LCM and than on doing the cross multiplication, we have
110x+125y=153500
And hence on further simplification we have
22x+25y=30700.........................(ii)
Now on subtracting the equation (ii) from (i), we have
3x-3y=-300
And hence on taking 3 common and doing the simplification, we have
$ \Rightarrow $x - y=-100……………………..(iii)
Similarly on adding equation (i) and (ii), we have
47x+47y=61100
And hence on taking 47 common from both sides and on doing the simplification, we have
$ \Rightarrow $x + y =1300…………………(iv)
Now on adding equations (iii) and (iv) we have
2x=1200
And hence x=600
Now on putting the value of x in equation (iii) we get
$ \Rightarrow $600-y=-100
$ \Rightarrow $y=100+600=700
Hence the cost price of a chair is Rs. 600 and cost price of a table is Rs. 700.
Note: In this type of question first of all we have to find the selling price of the given materials and than according to the given condition we can find the cost price of the materials.
Let the total price of one chair be Rs. x and that of one table to be Rs. Y.
Now it is given to us that Profit on a chair = 25%
$\therefore $ Selling Price of one chair= x+$\frac{{25x}}{{100}} = \frac{{125x}}{{100}}$
Now again we have given that Profit on a table =10%
$\therefore $Selling price of one table=y+$\frac{{10y}}{{100}} = \frac{{110y}}{{100}}$
Now according to the given condition we have given that the sum of the selling price of one chair and one table is 1520.
$\therefore $$\frac{{125x}}{{100}}$+$\frac{{110y}}{{100}}$=1520
Now since the denominator is same so we can add our numerators and on doing the cross multiplication, we have
$ \Rightarrow $ 125x+110y=152000
And hence on further simplification, we have
25x+22y=30400…………………(i)
Now according to the question if the profit on a chair is 10% and on a table is 25%
Then the total selling price is Rs.1535.
$\therefore $$\left( {x + \frac{{10x}}{{100}}} \right) + \left( {y + \frac{{25y}}{{100}}} \right) = 1535$
And hence again on taking the LCM and than on doing the cross multiplication, we have
110x+125y=153500
And hence on further simplification we have
22x+25y=30700.........................(ii)
Now on subtracting the equation (ii) from (i), we have
3x-3y=-300
And hence on taking 3 common and doing the simplification, we have
$ \Rightarrow $x - y=-100……………………..(iii)
Similarly on adding equation (i) and (ii), we have
47x+47y=61100
And hence on taking 47 common from both sides and on doing the simplification, we have
$ \Rightarrow $x + y =1300…………………(iv)
Now on adding equations (iii) and (iv) we have
2x=1200
And hence x=600
Now on putting the value of x in equation (iii) we get
$ \Rightarrow $600-y=-100
$ \Rightarrow $y=100+600=700
Hence the cost price of a chair is Rs. 600 and cost price of a table is Rs. 700.
Note: In this type of question first of all we have to find the selling price of the given materials and than according to the given condition we can find the cost price of the materials.
Recently Updated Pages
If ab and c are unit vectors then left ab2 right+bc2+ca2 class 12 maths JEE_Main

A rod AB of length 4 units moves horizontally when class 11 maths JEE_Main

Evaluate the value of intlimits0pi cos 3xdx A 0 B 1 class 12 maths JEE_Main

Which of the following is correct 1 nleft S cup T right class 10 maths JEE_Main

What is the area of the triangle with vertices Aleft class 11 maths JEE_Main

KCN reacts readily to give a cyanide with A Ethyl alcohol class 12 chemistry JEE_Main

Trending doubts
What was the capital of Kanishka A Mathura B Purushapura class 7 social studies CBSE

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Tropic of Cancer passes through how many states? Name them.

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

Name the Largest and the Smallest Cell in the Human Body ?
