Answer
Verified
445.5k+ views
Hint: We know that if a man invested \[{{\left( \dfrac{1}{{{n}_{1}}} \right)}^{th}}\]of his capital at \[{{x}_{1}}\%\]; \[{{\left( \dfrac{1}{{{n}_{2}}} \right)}^{th}}\] at \[{{x}_{2}}\%\],…….. \[{{\left( \dfrac{1}{{{n}_{k}}} \right)}^{th}}\] of his capital at \[{{x}_{k}}\%\], the capital is equal to y and the annual income is equal to A, then \[A=\sum\limits_{i=1}^{k}{\left( \dfrac{y}{{{n}_{i}}} \right){{x}_{i}}}\]. By using this formula, we can find the value of capital.
Complete step-by-step solution:
Before solving the problem, we should know that if a man invested \[{{\left( \dfrac{1}{{{n}_{1}}} \right)}^{th}}\]of his capital at \[{{x}_{1}}\%\]; \[{{\left( \dfrac{1}{{{n}_{2}}} \right)}^{th}}\] at \[{{x}_{2}}\%\],…….. \[{{\left( \dfrac{1}{{{n}_{k}}} \right)}^{th}}\] of his capital at \[{{x}_{k}}\%\], the capital is equal to y and the annual income is equal to A, then \[A=\sum\limits_{i=1}^{k}{\left( \dfrac{y}{{{n}_{i}}} \right){{x}_{i}}}\]. By using this formula, we can find the value of capital.
Let us assume the capital is equal to x. From the question, it is clear that a man invested one-third of his capital at 7%; one fourth at 8%, and the remainder at 10%. We are also given that the annual income is equal to 5610.
\[\begin{align}
& \Rightarrow \dfrac{7}{100}\times \dfrac{x}{3}+\dfrac{8}{100}\times \dfrac{x}{4}+\left( x-\dfrac{x}{3}-\dfrac{x}{4} \right)\left( \dfrac{10}{100} \right)=5610 \\
& \Rightarrow \dfrac{7}{100}\times \dfrac{x}{3}+\dfrac{8}{100}\times \dfrac{x}{4}+\dfrac{5x}{12}\times \dfrac{10}{100}=5610 \\
& \Rightarrow \dfrac{7x}{300}+\dfrac{2x}{100}+\dfrac{5x}{120}=5610 \\
& \Rightarrow \dfrac{14x}{600}+\dfrac{12x}{600}+\dfrac{25x}{600}=5610 \\
& \Rightarrow \dfrac{51x}{600}=5610 \\
& \Rightarrow 51x=5610\times 600 \\
& \Rightarrow x=\dfrac{5610\times 600}{51} \\
& \Rightarrow x=66000.....(1) \\
\end{align}\]
From equation (1), it is clear that the capital amount is equal to 66000.
Hence, option C is correct.
Note: Students may do the solution as follows:
Let us assume the capital is equal to x. From the question, it is clear that a man invested one-third of his capital at 7%; one fourth at 8%, and the remainder at 10%. We are also have given that the annual income is equal to 5610.
\[\begin{align}
& \Rightarrow \dfrac{7}{100}\times \dfrac{5610}{3}+\dfrac{8}{100}\times \dfrac{5610}{4}+\left( 5610-\dfrac{5610}{3}-\dfrac{5610}{4} \right)\left( \dfrac{10}{100} \right)=x \\
& \Rightarrow \dfrac{7}{100}\times \dfrac{5610}{3}+\dfrac{8}{100}\times \dfrac{5610}{4}+\dfrac{5\left( 5610 \right)}{12}\times \dfrac{10}{100}=x \\
& \Rightarrow \dfrac{7(5610)}{300}+\dfrac{2(5610)}{100}+\dfrac{5(5610)}{120}=x \\
& \Rightarrow \dfrac{14(5610)}{600}+\dfrac{12(5610)}{600}+\dfrac{25(5610)}{600}=x \\
& \Rightarrow \dfrac{51(5610)}{600}=x \\
& \Rightarrow 51(5610)=x\times 600 \\
& \Rightarrow x=\dfrac{5610\times 51}{600} \\
& \Rightarrow x=476.5....(1) \\
\end{align}\]
From equation (1), it is clear that the capital amount is equal to 476.5. But we know the capital amount is equal to 66000. So, this misconception should be avoided by a student to get the wrong answer.
Complete step-by-step solution:
Before solving the problem, we should know that if a man invested \[{{\left( \dfrac{1}{{{n}_{1}}} \right)}^{th}}\]of his capital at \[{{x}_{1}}\%\]; \[{{\left( \dfrac{1}{{{n}_{2}}} \right)}^{th}}\] at \[{{x}_{2}}\%\],…….. \[{{\left( \dfrac{1}{{{n}_{k}}} \right)}^{th}}\] of his capital at \[{{x}_{k}}\%\], the capital is equal to y and the annual income is equal to A, then \[A=\sum\limits_{i=1}^{k}{\left( \dfrac{y}{{{n}_{i}}} \right){{x}_{i}}}\]. By using this formula, we can find the value of capital.
Let us assume the capital is equal to x. From the question, it is clear that a man invested one-third of his capital at 7%; one fourth at 8%, and the remainder at 10%. We are also given that the annual income is equal to 5610.
\[\begin{align}
& \Rightarrow \dfrac{7}{100}\times \dfrac{x}{3}+\dfrac{8}{100}\times \dfrac{x}{4}+\left( x-\dfrac{x}{3}-\dfrac{x}{4} \right)\left( \dfrac{10}{100} \right)=5610 \\
& \Rightarrow \dfrac{7}{100}\times \dfrac{x}{3}+\dfrac{8}{100}\times \dfrac{x}{4}+\dfrac{5x}{12}\times \dfrac{10}{100}=5610 \\
& \Rightarrow \dfrac{7x}{300}+\dfrac{2x}{100}+\dfrac{5x}{120}=5610 \\
& \Rightarrow \dfrac{14x}{600}+\dfrac{12x}{600}+\dfrac{25x}{600}=5610 \\
& \Rightarrow \dfrac{51x}{600}=5610 \\
& \Rightarrow 51x=5610\times 600 \\
& \Rightarrow x=\dfrac{5610\times 600}{51} \\
& \Rightarrow x=66000.....(1) \\
\end{align}\]
From equation (1), it is clear that the capital amount is equal to 66000.
Hence, option C is correct.
Note: Students may do the solution as follows:
Let us assume the capital is equal to x. From the question, it is clear that a man invested one-third of his capital at 7%; one fourth at 8%, and the remainder at 10%. We are also have given that the annual income is equal to 5610.
\[\begin{align}
& \Rightarrow \dfrac{7}{100}\times \dfrac{5610}{3}+\dfrac{8}{100}\times \dfrac{5610}{4}+\left( 5610-\dfrac{5610}{3}-\dfrac{5610}{4} \right)\left( \dfrac{10}{100} \right)=x \\
& \Rightarrow \dfrac{7}{100}\times \dfrac{5610}{3}+\dfrac{8}{100}\times \dfrac{5610}{4}+\dfrac{5\left( 5610 \right)}{12}\times \dfrac{10}{100}=x \\
& \Rightarrow \dfrac{7(5610)}{300}+\dfrac{2(5610)}{100}+\dfrac{5(5610)}{120}=x \\
& \Rightarrow \dfrac{14(5610)}{600}+\dfrac{12(5610)}{600}+\dfrac{25(5610)}{600}=x \\
& \Rightarrow \dfrac{51(5610)}{600}=x \\
& \Rightarrow 51(5610)=x\times 600 \\
& \Rightarrow x=\dfrac{5610\times 51}{600} \\
& \Rightarrow x=476.5....(1) \\
\end{align}\]
From equation (1), it is clear that the capital amount is equal to 476.5. But we know the capital amount is equal to 66000. So, this misconception should be avoided by a student to get the wrong answer.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Which are the Top 10 Largest Countries of the World?
One cusec is equal to how many liters class 8 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The mountain range which stretches from Gujarat in class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths