
A man deposited \[{\text{Rs 10000}}\] in a bank at the rate of \[{5\% }\] simple interest annually. Find the amount in $ 15th $ year since he deposited the amount and also calculate the total amount after $ 20 $ years.
Answer
503.7k+ views
Hint: Here we use the concept of Simple Interest.
$ {\text{Simple Interest}}\left( {{\text{SI}}} \right){\text{ = }}\dfrac{{{\text{P}} \times {\text{T}} \times {\text{R}}}}{{{\text{100}}}} $
Where P is the Principal amount
T is the time period
R is rate of interest per annum
$
{\text{Amount = Principal amount + Simple Interest}} \\
{\text{A = P + SI}} \;
$
Complete step-by-step answer:
Given: Principal amount is \[{\text{Rs 10000}}\]
Rate of interest per annum is \[{5\% }\]
We need to find the amount in $ 15th $ year and total amount after $ 20 $ years.
Simple interest for $ 15 $ years is ,
$
{\text{Simple Interest}}{\left( {{\text{SI}}} \right)_{{\text{15 years}}}}{\text{ = }}\dfrac{{{\text{P}} \times {\text{T}} \times {\text{R}}}}{{{\text{100}}}} \\
\Rightarrow {\text{Simple Interest}}{\left( {{\text{SI}}} \right)_{{\text{15 years}}}}{\text{ = }}\dfrac{{{\text{10000}} \times {\text{15}} \times {\text{5}}}}{{{\text{100}}}} \\
\Rightarrow {\text{Simple Interest}}{\left( {{\text{SI}}} \right)_{{\text{15 years}}}}{\text{ = 7500}} \;
$
Amount $ 15 $ years since is,
$
{\text{Principal + S}}{{\text{I}}_{{\text{15 years}}}} \\
\Rightarrow {\text{10000 + 7500}} \\
\Rightarrow {\text{17500}} \;
$
Therefore amount in $ 15th $ year since deposited is $ {\text{Rs 17500}} $
So, the correct answer is “ $ {\text{Rs 17500}} $ ”.
Simple interest for $ 20 $ years is ,
$
{\text{Simple Interest}}{\left( {{\text{SI}}} \right)_{{\text{20 years}}}}{\text{ = }}\dfrac{{{\text{P}} \times {\text{T}} \times {\text{R}}}}{{{\text{100}}}} \\
\Rightarrow {\text{Simple Interest}}{\left( {{\text{SI}}} \right)_{{\text{20 years}}}}{\text{ = }}\dfrac{{{\text{10000}} \times {\text{20}} \times {\text{5}}}}{{{\text{100}}}} \\
\Rightarrow {\text{Simple Interest}}{\left( {{\text{SI}}} \right)_{{\text{20 years}}}}{\text{ = 10000}} \;
$
Amount after $ 20 $ years is,
$
{\text{Principal + S}}{{\text{I}}_{{\text{20 years}}}} \\
\Rightarrow {\text{10000 + 10000}} \\
\Rightarrow 200{\text{00}} \;
$
Therefore amount after $ 20 $ years is $ {\text{Rs 20000}} $
So, the correct answer is “ $ {\text{Rs 20000}} $ ”.
Note: In the questions involving the concept of Simple Interest we need to have knowledge about the formula and the terms involved in it. Applying the given information and solving accordingly by applying the appropriate formulae will help us to find the required value.
$ {\text{Simple Interest}}\left( {{\text{SI}}} \right){\text{ = }}\dfrac{{{\text{P}} \times {\text{T}} \times {\text{R}}}}{{{\text{100}}}} $
Where P is the Principal amount
T is the time period
R is rate of interest per annum
$
{\text{Amount = Principal amount + Simple Interest}} \\
{\text{A = P + SI}} \;
$
Complete step-by-step answer:
Given: Principal amount is \[{\text{Rs 10000}}\]
Rate of interest per annum is \[{5\% }\]
We need to find the amount in $ 15th $ year and total amount after $ 20 $ years.
Simple interest for $ 15 $ years is ,
$
{\text{Simple Interest}}{\left( {{\text{SI}}} \right)_{{\text{15 years}}}}{\text{ = }}\dfrac{{{\text{P}} \times {\text{T}} \times {\text{R}}}}{{{\text{100}}}} \\
\Rightarrow {\text{Simple Interest}}{\left( {{\text{SI}}} \right)_{{\text{15 years}}}}{\text{ = }}\dfrac{{{\text{10000}} \times {\text{15}} \times {\text{5}}}}{{{\text{100}}}} \\
\Rightarrow {\text{Simple Interest}}{\left( {{\text{SI}}} \right)_{{\text{15 years}}}}{\text{ = 7500}} \;
$
Amount $ 15 $ years since is,
$
{\text{Principal + S}}{{\text{I}}_{{\text{15 years}}}} \\
\Rightarrow {\text{10000 + 7500}} \\
\Rightarrow {\text{17500}} \;
$
Therefore amount in $ 15th $ year since deposited is $ {\text{Rs 17500}} $
So, the correct answer is “ $ {\text{Rs 17500}} $ ”.
Simple interest for $ 20 $ years is ,
$
{\text{Simple Interest}}{\left( {{\text{SI}}} \right)_{{\text{20 years}}}}{\text{ = }}\dfrac{{{\text{P}} \times {\text{T}} \times {\text{R}}}}{{{\text{100}}}} \\
\Rightarrow {\text{Simple Interest}}{\left( {{\text{SI}}} \right)_{{\text{20 years}}}}{\text{ = }}\dfrac{{{\text{10000}} \times {\text{20}} \times {\text{5}}}}{{{\text{100}}}} \\
\Rightarrow {\text{Simple Interest}}{\left( {{\text{SI}}} \right)_{{\text{20 years}}}}{\text{ = 10000}} \;
$
Amount after $ 20 $ years is,
$
{\text{Principal + S}}{{\text{I}}_{{\text{20 years}}}} \\
\Rightarrow {\text{10000 + 10000}} \\
\Rightarrow 200{\text{00}} \;
$
Therefore amount after $ 20 $ years is $ {\text{Rs 20000}} $
So, the correct answer is “ $ {\text{Rs 20000}} $ ”.
Note: In the questions involving the concept of Simple Interest we need to have knowledge about the formula and the terms involved in it. Applying the given information and solving accordingly by applying the appropriate formulae will help us to find the required value.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Which is the largest saltwater lake in India A Chilika class 8 social science CBSE

List some examples of Rabi and Kharif crops class 8 biology CBSE

How many ounces are in 500 mL class 8 maths CBSE

How many ten lakhs are in one crore-class-8-maths-CBSE

Name the states through which the Tropic of Cancer class 8 social science CBSE
