
A man deposited \[{\text{Rs 10000}}\] in a bank at the rate of \[{5\% }\] simple interest annually. Find the amount in $ 15th $ year since he deposited the amount and also calculate the total amount after $ 20 $ years.
Answer
555k+ views
Hint: Here we use the concept of Simple Interest.
$ {\text{Simple Interest}}\left( {{\text{SI}}} \right){\text{ = }}\dfrac{{{\text{P}} \times {\text{T}} \times {\text{R}}}}{{{\text{100}}}} $
Where P is the Principal amount
T is the time period
R is rate of interest per annum
$
{\text{Amount = Principal amount + Simple Interest}} \\
{\text{A = P + SI}} \;
$
Complete step-by-step answer:
Given: Principal amount is \[{\text{Rs 10000}}\]
Rate of interest per annum is \[{5\% }\]
We need to find the amount in $ 15th $ year and total amount after $ 20 $ years.
Simple interest for $ 15 $ years is ,
$
{\text{Simple Interest}}{\left( {{\text{SI}}} \right)_{{\text{15 years}}}}{\text{ = }}\dfrac{{{\text{P}} \times {\text{T}} \times {\text{R}}}}{{{\text{100}}}} \\
\Rightarrow {\text{Simple Interest}}{\left( {{\text{SI}}} \right)_{{\text{15 years}}}}{\text{ = }}\dfrac{{{\text{10000}} \times {\text{15}} \times {\text{5}}}}{{{\text{100}}}} \\
\Rightarrow {\text{Simple Interest}}{\left( {{\text{SI}}} \right)_{{\text{15 years}}}}{\text{ = 7500}} \;
$
Amount $ 15 $ years since is,
$
{\text{Principal + S}}{{\text{I}}_{{\text{15 years}}}} \\
\Rightarrow {\text{10000 + 7500}} \\
\Rightarrow {\text{17500}} \;
$
Therefore amount in $ 15th $ year since deposited is $ {\text{Rs 17500}} $
So, the correct answer is “ $ {\text{Rs 17500}} $ ”.
Simple interest for $ 20 $ years is ,
$
{\text{Simple Interest}}{\left( {{\text{SI}}} \right)_{{\text{20 years}}}}{\text{ = }}\dfrac{{{\text{P}} \times {\text{T}} \times {\text{R}}}}{{{\text{100}}}} \\
\Rightarrow {\text{Simple Interest}}{\left( {{\text{SI}}} \right)_{{\text{20 years}}}}{\text{ = }}\dfrac{{{\text{10000}} \times {\text{20}} \times {\text{5}}}}{{{\text{100}}}} \\
\Rightarrow {\text{Simple Interest}}{\left( {{\text{SI}}} \right)_{{\text{20 years}}}}{\text{ = 10000}} \;
$
Amount after $ 20 $ years is,
$
{\text{Principal + S}}{{\text{I}}_{{\text{20 years}}}} \\
\Rightarrow {\text{10000 + 10000}} \\
\Rightarrow 200{\text{00}} \;
$
Therefore amount after $ 20 $ years is $ {\text{Rs 20000}} $
So, the correct answer is “ $ {\text{Rs 20000}} $ ”.
Note: In the questions involving the concept of Simple Interest we need to have knowledge about the formula and the terms involved in it. Applying the given information and solving accordingly by applying the appropriate formulae will help us to find the required value.
$ {\text{Simple Interest}}\left( {{\text{SI}}} \right){\text{ = }}\dfrac{{{\text{P}} \times {\text{T}} \times {\text{R}}}}{{{\text{100}}}} $
Where P is the Principal amount
T is the time period
R is rate of interest per annum
$
{\text{Amount = Principal amount + Simple Interest}} \\
{\text{A = P + SI}} \;
$
Complete step-by-step answer:
Given: Principal amount is \[{\text{Rs 10000}}\]
Rate of interest per annum is \[{5\% }\]
We need to find the amount in $ 15th $ year and total amount after $ 20 $ years.
Simple interest for $ 15 $ years is ,
$
{\text{Simple Interest}}{\left( {{\text{SI}}} \right)_{{\text{15 years}}}}{\text{ = }}\dfrac{{{\text{P}} \times {\text{T}} \times {\text{R}}}}{{{\text{100}}}} \\
\Rightarrow {\text{Simple Interest}}{\left( {{\text{SI}}} \right)_{{\text{15 years}}}}{\text{ = }}\dfrac{{{\text{10000}} \times {\text{15}} \times {\text{5}}}}{{{\text{100}}}} \\
\Rightarrow {\text{Simple Interest}}{\left( {{\text{SI}}} \right)_{{\text{15 years}}}}{\text{ = 7500}} \;
$
Amount $ 15 $ years since is,
$
{\text{Principal + S}}{{\text{I}}_{{\text{15 years}}}} \\
\Rightarrow {\text{10000 + 7500}} \\
\Rightarrow {\text{17500}} \;
$
Therefore amount in $ 15th $ year since deposited is $ {\text{Rs 17500}} $
So, the correct answer is “ $ {\text{Rs 17500}} $ ”.
Simple interest for $ 20 $ years is ,
$
{\text{Simple Interest}}{\left( {{\text{SI}}} \right)_{{\text{20 years}}}}{\text{ = }}\dfrac{{{\text{P}} \times {\text{T}} \times {\text{R}}}}{{{\text{100}}}} \\
\Rightarrow {\text{Simple Interest}}{\left( {{\text{SI}}} \right)_{{\text{20 years}}}}{\text{ = }}\dfrac{{{\text{10000}} \times {\text{20}} \times {\text{5}}}}{{{\text{100}}}} \\
\Rightarrow {\text{Simple Interest}}{\left( {{\text{SI}}} \right)_{{\text{20 years}}}}{\text{ = 10000}} \;
$
Amount after $ 20 $ years is,
$
{\text{Principal + S}}{{\text{I}}_{{\text{20 years}}}} \\
\Rightarrow {\text{10000 + 10000}} \\
\Rightarrow 200{\text{00}} \;
$
Therefore amount after $ 20 $ years is $ {\text{Rs 20000}} $
So, the correct answer is “ $ {\text{Rs 20000}} $ ”.
Note: In the questions involving the concept of Simple Interest we need to have knowledge about the formula and the terms involved in it. Applying the given information and solving accordingly by applying the appropriate formulae will help us to find the required value.
Recently Updated Pages
Questions & Answers - Ask your doubts

A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Two Planoconcave lenses 1 and 2 of glass of refractive class 12 physics CBSE

The compound 2 methyl 2 butene on reaction with NaIO4 class 12 chemistry CBSE

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Name the states through which the Tropic of Cancer class 8 social science CBSE

Full form of STD, ISD and PCO

Right to vote is a AFundamental Right BFundamental class 8 social science CBSE

Summary of the poem Where the Mind is Without Fear class 8 english CBSE


