
When a load of \[10\,{\text{kg}}\]is hung from the wire, then extension of \[{\text{2 m}}\] is produced. Then work done by restoring force is
A. \[{\text{200 J}}\]
B. \[{\text{100 J}}\]
C. \[{\text{50 J}}\]
D. \[{\text{25 J}}\]
Answer
563.1k+ views
Hint:To find the work done by the restoring force, first you will need to find the value of force constant of the wire. To find the value of force constant you will need to balance the weight of the load and the restoring force. After that, put the value of force constant in the formula of work done to get the required answer.
Complete step by step answer:
Given, load hung from the wire, \[m = 10\,{\text{kg}}\].
Extension or displacement of wire produced, \[x = {\text{2 m}}\].
Let the acceleration due to gravity be \[g = 10\,{\text{m}}{{\text{s}}^{{\text{ - 2}}}}\].
We have the formula for restoring force as,
\[F = kx\] (i)
where \[k\] is the force constant and \[x\] is the displacement of the wire.
Here, the displacement is \[x = {\text{2 m}}\] so, the restoring force of the wire will be,
\[F = k \times 2\]
\[ \Rightarrow F = 2k\]
The weight of the load will balance this restoring force that is,
\[F = {\text{weight of the load}}\] (ii)
We have the formula for weight of a object as,
\[W = mg\]
Putting this value in equation (ii) we get,
\[F = mg\]
Putting the values of \[F\], \[m\] and \[g\] we get,
\[2k = 10 \times 10\]
\[ \Rightarrow k = \dfrac{{100}}{2}\]
\[ \Rightarrow k = 50\,{\text{N}}{{\text{m}}^{{\text{ - 1}}}}\]
Work done by restoring force is given by the formula,
\[W = \dfrac{1}{2}k{x^2}\]
Putting the value of \[k\] and \[x\] in the above formula we get,
\[W = \dfrac{1}{2} \times 50 \times {2^2}\]
\[ \Rightarrow W = 50 \times 2\]
\[ \therefore W = 100\,{\text{J}}\]
Therefore, work done by restoring force is \[100\,{\text{J}}\].
Hence, the correct answer is option B.
Note:Restoring force is the force which brings a body back to its original size and shape. The restoring force given by Hooke’s law which states that force needed to extend or compress a wire or spring is directly proportional to the displacement from its mean position. There is also another term known as deforming force, which is the force that changes the size and shape of a body.
Complete step by step answer:
Given, load hung from the wire, \[m = 10\,{\text{kg}}\].
Extension or displacement of wire produced, \[x = {\text{2 m}}\].
Let the acceleration due to gravity be \[g = 10\,{\text{m}}{{\text{s}}^{{\text{ - 2}}}}\].
We have the formula for restoring force as,
\[F = kx\] (i)
where \[k\] is the force constant and \[x\] is the displacement of the wire.
Here, the displacement is \[x = {\text{2 m}}\] so, the restoring force of the wire will be,
\[F = k \times 2\]
\[ \Rightarrow F = 2k\]
The weight of the load will balance this restoring force that is,
\[F = {\text{weight of the load}}\] (ii)
We have the formula for weight of a object as,
\[W = mg\]
Putting this value in equation (ii) we get,
\[F = mg\]
Putting the values of \[F\], \[m\] and \[g\] we get,
\[2k = 10 \times 10\]
\[ \Rightarrow k = \dfrac{{100}}{2}\]
\[ \Rightarrow k = 50\,{\text{N}}{{\text{m}}^{{\text{ - 1}}}}\]
Work done by restoring force is given by the formula,
\[W = \dfrac{1}{2}k{x^2}\]
Putting the value of \[k\] and \[x\] in the above formula we get,
\[W = \dfrac{1}{2} \times 50 \times {2^2}\]
\[ \Rightarrow W = 50 \times 2\]
\[ \therefore W = 100\,{\text{J}}\]
Therefore, work done by restoring force is \[100\,{\text{J}}\].
Hence, the correct answer is option B.
Note:Restoring force is the force which brings a body back to its original size and shape. The restoring force given by Hooke’s law which states that force needed to extend or compress a wire or spring is directly proportional to the displacement from its mean position. There is also another term known as deforming force, which is the force that changes the size and shape of a body.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

