Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

A litter of water has a mass of $1000g$.What is the density of water?

Answer
VerifiedVerified
467.7k+ views
Hint: All that you have to know is what is meant by the density of water and how to calculate the density by having mass and volume.
In this, we can see how to calculate the density of water if a liter of water has a mass of \[1000g\].
Also, we can see the concept of water density and its definition.
Formula used-
$\text{Density}=\dfrac{\text{Mass}}{\text{Volume}}$

Complete answer:
$\text{Density}=\dfrac{\text{Mass}}{\text{Volume}}$
 Or in layman’s terms, the mass of \[m = \rho \times V\] an object.
 Volume =\[1{\text{ }}litre\]
                = $1000cm^3$ and
Mass=\[1000gm\]
By Substituting both into the equation of density, we will get the water density to be $1g/cm^3$ density is mass per unit volume where S.I. unit of mass is kg and S.I. The unit of volume is l as according to the density.
As volume is 1 and mass is 1kg so density becomes mass/volume $(1/1)$ also unit \[1\].
(or)
$= \dfrac{{1000.g}}{{1000.mL}}$
$= 1000 \cdot kg \cdot {m^{ - 3}}$
You can find Mass from density by the following;
You multiply the density by the volume.
$\rho$ is a density that is defined as mass per unit volume.
\[\rho = mV\]
to get the expression for the mass you can rearrange this.
\[m = \rho \times V\]
The Density of water:
roughly 1 gram per milliliter is the density of water but this changes if there are substances dissolved in it or changes with temperature.

Note:
Mass of water \[\;18.02{\text{ }}g/mol\] is the molar mass of the water. The formula mass is numerically the same as the molar mass.
Density = Mass / Volume. Or in layman’s terms, the mass of $1 cm^3$ or $1 m^3$ of an object. Mass per unit volume is defined as the density of a material. It’s a measurement of how tightly the matter is packed together. density is mass per unit volume where S.I. unit of mass is kg and S.I. The unit of volume is l as according to the density.