
A line segment has endpoints at \[\left( {1,2} \right)\] and \[\left( {3,1} \right)\] . The line segment is dilated by a factor of \[\dfrac{1}{2}\] around \[\left( {2,5} \right)\] .What are the new endpoints and length of the line segment?
Answer
463.2k+ views
Hint: In order to solve this question, we will use the concept that if a point \[X\] of coordinate \[\left( {a,b} \right)\] is dilated by a factor \[n\] around the point of coordinate \[\left( {h,k} \right)\] , then after dilation the new position of point will be \[{X'} = \left( {n\left( {a - h} \right) + h,{\text{ }}n\left( {b - k} \right) + k} \right)\] .Firstly we will let \[A\] and \[B\] be the two endpoints of the line segment. After that we will let \[{A'}\] and \[{B'}\] be the new endpoints of the line segment after dilation and find them by substituting the values in the above formula. And finally, we will find the length of the dilated line segment using distance formula i.e., \[d = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} \] .And hence we will get the required result.
Complete answer::
Let \[A\] and \[B\] be the two endpoints of the line segment.
which means \[A\left( {1,2} \right)\] and \[B\left( {3,1} \right)\] be the two endpoints of the line segment.
And let \[{A'}\] and \[{B'}\] be the two new endpoints of the line segment.
Now we know that
If a point \[X\] of coordinate \[\left( {a,b} \right)\] is dilated by a factor \[n\] around the point of coordinate, \[\left( {h,k} \right)\] then after dilation the new position of point will be
\[{X'} = \left( {n\left( {a - h} \right) + h,{\text{ }}n\left( {b - k} \right) + k} \right)\]
This means
\[X\left( {a,b} \right) = \xrightarrow{{dilated{\text{ }}nX{\text{ }}around{\text{ }}\left( {h,k} \right)}}{X'}\left( {n\left( {a - h} \right) + h,n\left( {b - k} \right) + k} \right)\]
Now it is given that
line segment is dilated by a factor of \[\dfrac{1}{2}\] around \[\left( {2,5} \right)\]
which means \[n = \dfrac{1}{2}\] and \[\left( {h,k} \right) = \left( {2,5} \right)\]
Using the formula, we get
\[A\left( {1,2} \right) = \xrightarrow{{dilated{\text{ }}\dfrac{1}{2}X{\text{ }}around{\text{ }}\left( {2,5} \right)}}{A'}\left( {\dfrac{1}{2}\left( {1 - 2} \right) + 2,{\text{ }}\dfrac{1}{2}\left( {2 - 5} \right) + 5} \right)\]
\[ \Rightarrow A\left( {1,2} \right) = \xrightarrow{{dilated{\text{ }}\dfrac{1}{2}X{\text{ }}around{\text{ }}\left( {2,5} \right)}}{A'}\left( {\dfrac{{ - 1}}{2} + 2,{\text{ }}\dfrac{{ - 3}}{2} + 5} \right)\]
On simplification, we get
\[A\left( {1,2} \right) = \xrightarrow{{dilated{\text{ }}\dfrac{1}{2}X{\text{ }}around{\text{ }}\left( {2,5} \right)}}{A'}\left( {\dfrac{3}{2},\dfrac{7}{2}} \right)\]
which means the first new endpoint is \[{A'}\left( {\dfrac{3}{2},\dfrac{7}{2}} \right)\]
Similarly,
\[B\left( {3,1} \right) = \xrightarrow{{dilated{\text{ }}\dfrac{1}{2}X{\text{ }}around{\text{ }}\left( {2,5} \right)}}{B'}\left( {\dfrac{1}{2}\left( {3 - 2} \right) + 2,{\text{ }}\dfrac{1}{2}\left( {1 - 5} \right) + 5} \right)\]
\[ \Rightarrow B\left( {3,1} \right) = \xrightarrow{{dilated{\text{ }}\dfrac{1}{2}X{\text{ }}around{\text{ }}\left( {2,5} \right)}}{B'}\left( {\dfrac{1}{2} + 2,{\text{ }}\dfrac{{ - 4}}{2} + 5} \right)\]
On simplification, we get
\[B\left( {3,1} \right) = \xrightarrow{{dilated{\text{ }}\dfrac{1}{2}X{\text{ }}around{\text{ }}\left( {2,5} \right)}}{B'}\left( {\dfrac{5}{2},3} \right)\]
which means the second new endpoint is \[{B'}\left( {\dfrac{5}{2},3} \right)\]
Therefore, the new endpoints are \[{A'}\left( {\dfrac{3}{2},\dfrac{7}{2}} \right)\] and \[{B'}\left( {\dfrac{5}{2},3} \right)\]
Now we know that
Distance formula, \[d = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} \]
Therefore, the length of the dilated line segment will be
\[{A'}{B'} = \sqrt {{{\left( {\dfrac{5}{2} - \dfrac{3}{2}} \right)}^2} + {{\left( {3 - \dfrac{7}{2}} \right)}^2}} \]
\[ \Rightarrow {A'}{B'} = \sqrt {{{\left( 1 \right)}^2} + {{\left( {\dfrac{{ - 1}}{2}} \right)}^2}} \]
\[ \Rightarrow {A'}{B'} = \sqrt {\dfrac{5}{4}} \]
We know that \[\sqrt {\dfrac{a}{b}} = \dfrac{{\sqrt a }}{{\sqrt b }}\]
Therefore, we have
\[ \Rightarrow {A'}{B'} = \sqrt {\dfrac{5}{4}} = \dfrac{{\sqrt 5 }}{2}\]
We know that \[\sqrt 5 = 2.236\]
\[ \Rightarrow {A'}{B'} = \dfrac{{2.236}}{2} = 1.118\]
Hence, the new endpoints are \[{A'}\left( {\dfrac{3}{2},\dfrac{7}{2}} \right)\] and \[{B'}\left( {\dfrac{5}{2},3} \right)\]
and the length of line segment \[{A'}{B'} = 1.118\]
Note:
Alternative way to solve this problem is:
If \[{x_0}\] is the dilation centre, \[{x_1}\] and \[{x_2}\] are the coordinates of the endpoints of the line segment and \[\lambda \] is the factor of dilation, then the position of new endpoints will be given by:
\[x_1' = {x_0} + \lambda \left( {{x_1} - {x_0}} \right)\] and \[x_2' = {x_0} + \lambda \left( {{x_2} - {x_0}} \right)\]
So, here \[{x_0} = \left( {2,5} \right),{\text{ }}{x_1} = \left( {1,2} \right),{\text{ }}{x_2} = \left( {3,1} \right),{\text{ }}\lambda = \dfrac{1}{2}\]
Therefore, we get
\[x_1' = \left( {2,5} \right) + \dfrac{1}{2}\left( {\left( {1,2} \right) - \left( {2,5} \right)} \right)\]
\[ \Rightarrow x_1' = \left( {2,5} \right) + \dfrac{1}{2}\left( {1 - 2,2 - 5} \right)\]
\[ \Rightarrow x_1' = \left( {2,5} \right) + \left( {\dfrac{{ - 1}}{2},\dfrac{{ - 3}}{2}} \right)\]
\[ \Rightarrow x_1' = \left( {\dfrac{3}{2},\dfrac{7}{2}} \right)\]
And
\[x_2' = \left( {2,5} \right) + \dfrac{1}{2}\left( {\left( {3,1} \right) - \left( {2,5} \right)} \right)\]
\[ \Rightarrow x_2' = \left( {2,5} \right) + \dfrac{1}{2}\left( {3 - 2,{\text{ 1}} - 5} \right)\]
\[ \Rightarrow x_2' = \left( {2,5} \right) + \left( {\dfrac{1}{2}, - 2} \right) = \left( {\dfrac{5}{2},{\text{ }}3} \right)\]
Hence, the new endpoints are \[x_1' = \left( {\dfrac{3}{2},\dfrac{7}{2}} \right)\] and \[x_2' = \left( {\dfrac{5}{2},3} \right)\]
Now, the length of the dilated line segment will be
\[x_1'x_2' = \sqrt {{{\left( {\dfrac{5}{2} - \dfrac{3}{2}} \right)}^2} + {{\left( {3 - \dfrac{7}{2}} \right)}^2}} \]
\[ \Rightarrow x_1'x_2' = \dfrac{{\sqrt 5 }}{2} = \dfrac{{2.236}}{2}\]
\[ \Rightarrow x_1'x_2' = 1.118\]
Hence, the length of the line segment \[x_1'x_2' = 1.118\]
Hence, we get the required results.
Complete answer::
Let \[A\] and \[B\] be the two endpoints of the line segment.
which means \[A\left( {1,2} \right)\] and \[B\left( {3,1} \right)\] be the two endpoints of the line segment.
And let \[{A'}\] and \[{B'}\] be the two new endpoints of the line segment.
Now we know that
If a point \[X\] of coordinate \[\left( {a,b} \right)\] is dilated by a factor \[n\] around the point of coordinate, \[\left( {h,k} \right)\] then after dilation the new position of point will be
\[{X'} = \left( {n\left( {a - h} \right) + h,{\text{ }}n\left( {b - k} \right) + k} \right)\]
This means
\[X\left( {a,b} \right) = \xrightarrow{{dilated{\text{ }}nX{\text{ }}around{\text{ }}\left( {h,k} \right)}}{X'}\left( {n\left( {a - h} \right) + h,n\left( {b - k} \right) + k} \right)\]
Now it is given that
line segment is dilated by a factor of \[\dfrac{1}{2}\] around \[\left( {2,5} \right)\]
which means \[n = \dfrac{1}{2}\] and \[\left( {h,k} \right) = \left( {2,5} \right)\]
Using the formula, we get
\[A\left( {1,2} \right) = \xrightarrow{{dilated{\text{ }}\dfrac{1}{2}X{\text{ }}around{\text{ }}\left( {2,5} \right)}}{A'}\left( {\dfrac{1}{2}\left( {1 - 2} \right) + 2,{\text{ }}\dfrac{1}{2}\left( {2 - 5} \right) + 5} \right)\]
\[ \Rightarrow A\left( {1,2} \right) = \xrightarrow{{dilated{\text{ }}\dfrac{1}{2}X{\text{ }}around{\text{ }}\left( {2,5} \right)}}{A'}\left( {\dfrac{{ - 1}}{2} + 2,{\text{ }}\dfrac{{ - 3}}{2} + 5} \right)\]
On simplification, we get
\[A\left( {1,2} \right) = \xrightarrow{{dilated{\text{ }}\dfrac{1}{2}X{\text{ }}around{\text{ }}\left( {2,5} \right)}}{A'}\left( {\dfrac{3}{2},\dfrac{7}{2}} \right)\]
which means the first new endpoint is \[{A'}\left( {\dfrac{3}{2},\dfrac{7}{2}} \right)\]
Similarly,
\[B\left( {3,1} \right) = \xrightarrow{{dilated{\text{ }}\dfrac{1}{2}X{\text{ }}around{\text{ }}\left( {2,5} \right)}}{B'}\left( {\dfrac{1}{2}\left( {3 - 2} \right) + 2,{\text{ }}\dfrac{1}{2}\left( {1 - 5} \right) + 5} \right)\]
\[ \Rightarrow B\left( {3,1} \right) = \xrightarrow{{dilated{\text{ }}\dfrac{1}{2}X{\text{ }}around{\text{ }}\left( {2,5} \right)}}{B'}\left( {\dfrac{1}{2} + 2,{\text{ }}\dfrac{{ - 4}}{2} + 5} \right)\]
On simplification, we get
\[B\left( {3,1} \right) = \xrightarrow{{dilated{\text{ }}\dfrac{1}{2}X{\text{ }}around{\text{ }}\left( {2,5} \right)}}{B'}\left( {\dfrac{5}{2},3} \right)\]
which means the second new endpoint is \[{B'}\left( {\dfrac{5}{2},3} \right)\]
Therefore, the new endpoints are \[{A'}\left( {\dfrac{3}{2},\dfrac{7}{2}} \right)\] and \[{B'}\left( {\dfrac{5}{2},3} \right)\]
Now we know that
Distance formula, \[d = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} \]
Therefore, the length of the dilated line segment will be
\[{A'}{B'} = \sqrt {{{\left( {\dfrac{5}{2} - \dfrac{3}{2}} \right)}^2} + {{\left( {3 - \dfrac{7}{2}} \right)}^2}} \]
\[ \Rightarrow {A'}{B'} = \sqrt {{{\left( 1 \right)}^2} + {{\left( {\dfrac{{ - 1}}{2}} \right)}^2}} \]
\[ \Rightarrow {A'}{B'} = \sqrt {\dfrac{5}{4}} \]
We know that \[\sqrt {\dfrac{a}{b}} = \dfrac{{\sqrt a }}{{\sqrt b }}\]
Therefore, we have
\[ \Rightarrow {A'}{B'} = \sqrt {\dfrac{5}{4}} = \dfrac{{\sqrt 5 }}{2}\]
We know that \[\sqrt 5 = 2.236\]
\[ \Rightarrow {A'}{B'} = \dfrac{{2.236}}{2} = 1.118\]
Hence, the new endpoints are \[{A'}\left( {\dfrac{3}{2},\dfrac{7}{2}} \right)\] and \[{B'}\left( {\dfrac{5}{2},3} \right)\]
and the length of line segment \[{A'}{B'} = 1.118\]
Note:
Alternative way to solve this problem is:
If \[{x_0}\] is the dilation centre, \[{x_1}\] and \[{x_2}\] are the coordinates of the endpoints of the line segment and \[\lambda \] is the factor of dilation, then the position of new endpoints will be given by:
\[x_1' = {x_0} + \lambda \left( {{x_1} - {x_0}} \right)\] and \[x_2' = {x_0} + \lambda \left( {{x_2} - {x_0}} \right)\]
So, here \[{x_0} = \left( {2,5} \right),{\text{ }}{x_1} = \left( {1,2} \right),{\text{ }}{x_2} = \left( {3,1} \right),{\text{ }}\lambda = \dfrac{1}{2}\]
Therefore, we get
\[x_1' = \left( {2,5} \right) + \dfrac{1}{2}\left( {\left( {1,2} \right) - \left( {2,5} \right)} \right)\]
\[ \Rightarrow x_1' = \left( {2,5} \right) + \dfrac{1}{2}\left( {1 - 2,2 - 5} \right)\]
\[ \Rightarrow x_1' = \left( {2,5} \right) + \left( {\dfrac{{ - 1}}{2},\dfrac{{ - 3}}{2}} \right)\]
\[ \Rightarrow x_1' = \left( {\dfrac{3}{2},\dfrac{7}{2}} \right)\]
And
\[x_2' = \left( {2,5} \right) + \dfrac{1}{2}\left( {\left( {3,1} \right) - \left( {2,5} \right)} \right)\]
\[ \Rightarrow x_2' = \left( {2,5} \right) + \dfrac{1}{2}\left( {3 - 2,{\text{ 1}} - 5} \right)\]
\[ \Rightarrow x_2' = \left( {2,5} \right) + \left( {\dfrac{1}{2}, - 2} \right) = \left( {\dfrac{5}{2},{\text{ }}3} \right)\]
Hence, the new endpoints are \[x_1' = \left( {\dfrac{3}{2},\dfrac{7}{2}} \right)\] and \[x_2' = \left( {\dfrac{5}{2},3} \right)\]
Now, the length of the dilated line segment will be
\[x_1'x_2' = \sqrt {{{\left( {\dfrac{5}{2} - \dfrac{3}{2}} \right)}^2} + {{\left( {3 - \dfrac{7}{2}} \right)}^2}} \]
\[ \Rightarrow x_1'x_2' = \dfrac{{\sqrt 5 }}{2} = \dfrac{{2.236}}{2}\]
\[ \Rightarrow x_1'x_2' = 1.118\]
Hence, the length of the line segment \[x_1'x_2' = 1.118\]
Hence, we get the required results.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Explain zero factorial class 11 maths CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

State the laws of reflection of light

Name the metals and nonmetals in the first twenty class 11 chemistry CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

