
A light of wavelength${\text{12818}}\,{{\text{A}}^{\text{o}}}$is emitted when the electron of a hydrogen atom drop from fifth to third quantum level. Find the wavelength of the photon emitted when an electron falls from third to ground level?
A. ${\text{1025}}\,\,{\buildrel _{\circ} \over {\mathrm{A}}} $
B. ${\text{2050}}\,{\buildrel _{\circ} \over {\mathrm{A}}} $
C. ${\text{1320}}\,{\buildrel _{\circ} \over {\mathrm{A}}} $
D. ${\text{2460}}\,{\buildrel _{\circ} \over {\mathrm{A}}} $
Answer
567.3k+ views
Hint: We will determine the value of Rydberg constant by using the wavelength formula. Then by using the same formula and value of the calculated Rydberg constant we will determine the wavelength of the photon for the transition from third to ground level.
Formula used: \[\dfrac{{\text{1}}}{{{\lambda }}} = \,{{\text{R}}_{\text{H}}}\left[ {\dfrac{{\text{1}}}{{{\text{n}}_{{\text{Lower}}}^{\text{2}}}} - \dfrac{{\text{1}}}{{{\text{n}}_{{\text{higher}}}^2}}} \right]\]
Complete answer
${\buildrel _{\circ} \over {\mathrm{A}}}$
The formula to determine the wavelength of transitions in hydrogen spectrum is as follows:
\[\dfrac{{\text{1}}}{{{\lambda }}} = \,{{\text{R}}_{\text{H}}}\left[ {\dfrac{{\text{1}}}{{{\text{n}}_{{\text{Lower}}}^{\text{2}}}} - \dfrac{{\text{1}}}{{{\text{n}}_{{\text{higher}}}^2}}} \right]\]
where,
\[{{\lambda }}\] is the wavelength.
\[{{\text{R}}_{\text{H}}}\] is the Rydberg constant.
The value of the Rydberg constant is .
\[{{\text{n}}_{{\text{lower}}}}\] is the principle quantum of the energy level in which the electron comes.
\[{{\text{n}}_{{\text{higher}}}}\] is the principle quantum of the energy level from which the electron comes.
Determine the Rydberg constant. Value as follows:
For the transition ${{\text{n}}_{\text{5}}}\, \to {{\text{n}}_{\text{3}}}$,
Substitute ${\text{12818}}{{\buildrel _{\circ} \over {\mathrm{A}}}}$ for wavelength, $3$ for \[{{\text{n}}_{{\text{lower}}}}\] and $5$ for \[{{\text{n}}_{{\text{higher}}}}\].
\[\dfrac{{\text{1}}}{{12818\,{\buildrel _{\circ} \over {\mathrm{A}}}}} = \,{{\text{R}}_{\text{H}}}\left[ {\dfrac{{\text{1}}}{{{3^2}}} - \dfrac{{\text{1}}}{{{5^2}}}} \right]\]
\[\Rightarrow \dfrac{{\text{1}}}{{12818}} = \,{{\text{R}}_{\text{H}}}\left[ {\dfrac{{25 - 9}}{{225}}} \right]\]
\[\Rightarrow {{\text{R}}_{\text{H}}}\,\, = \,\dfrac{{225}}{{12818\,{\buildrel _{\circ} \over {\mathrm{A}}}\, \times \,16}}\]
\[\Rightarrow {{\text{R}}_{\text{H}}}\,\, = \dfrac{1.1 \times {10^{ - 3}}\,}{{\buildrel _{\circ} \over {\mathrm{A}}}}\]
So, the Rydberg constant is $\dfrac{1.1 \times {10^{ - 3}}}{{\buildrel _{\circ} \over {\mathrm{A}}}}$.
For the transition ${{\text{n}}_3}\, \to {{\text{n}}_1}$,
Substitute for Rydberg constant, $1$ for \[{{\text{n}}_{{\text{lower}}}}\] and $3$ for \[{{\text{n}}_{{\text{higher}}}}\].
\[\Rightarrow \dfrac{{\text{1}}}{{{\lambda }}} = \dfrac{1.1 \times {10^{ - 3}}\,}{{\buildrel _{\circ} \over {\mathrm{A}}}}\times\left[ {\dfrac{{\text{1}}}{{{3^2}}} - \dfrac{{\text{1}}}{{{1^2}}}} \right]\]
\[\Rightarrow \dfrac{{\text{1}}}{{{\lambda }}} = \dfrac{1.1 \times {10^{ - 3}}\,}{{\buildrel _{\circ} \over {\mathrm{A}}}}\times \left[ {\dfrac{{9 - 1}}{9}} \right]\]
\[\Rightarrow \dfrac{{\text{1}}}{{{\lambda }}} = \dfrac{1.1 \times {10^{ - 3}}}{{\buildrel _{\circ} \over {\mathrm{A}}}}\times \dfrac{8}{9}\,\]
\[\Rightarrow \dfrac{{\text{1}}}{{{\lambda }}} = \,\,9.75 \times {10^{ - 4}}/{\buildrel _{\circ} \over {\mathrm{A}}}\]
\[\Rightarrow {{\lambda }} = 1025\,{\buildrel _{\circ} \over {\mathrm{A}}}\]
So, the wavelength of the photon emitted when electron falls from third to ground level is ${\text{1025}}\,\,{\buildrel _{\circ} \over {\mathrm{A}}}$.
Therefore, option (A) ${\text{1025}}\,\,{\buildrel _{\circ} \over {\mathrm{A}}}$ is correct.
Note:The relation between energy and wavelength is as follows: ${\text{E = }}\dfrac{{{\text{hc}}}}{{{\lambda }}}$ . Wavelength and energy are inversely proportional. Wavelength of ${{\text{n}}_{\text{5}}}\, \to {{\text{n}}_{\text{3}}}$transition is ${\text{12818}}\,\,{\buildrel _{\circ} \over {\mathrm{A}}}$ whereas the wavelength of ${{\text{n}}_3}\, \to {{\text{n}}_1}$transition is ${\text{1025}}\,{\buildrel _{\circ} \over {\mathrm{A}}}$ means high energy is required for ${{\text{n}}_3}\, \to {{\text{n}}_1}$ transition because lower energy are more stable. In hydrogen, the lines arise when electron comes from third energy level to lower energy level of Principle quantum number one ${{\text{n}}_3}\, \to {{\text{n}}_1}$ is known as Lyman series. The lines arise when electron comes from fifth energy level to lower energy level of Principle quantum number three ${{\text{n}}_{\text{5}}}\, \to {{\text{n}}_{\text{3}}}$ is known as Paschen series.
Formula used: \[\dfrac{{\text{1}}}{{{\lambda }}} = \,{{\text{R}}_{\text{H}}}\left[ {\dfrac{{\text{1}}}{{{\text{n}}_{{\text{Lower}}}^{\text{2}}}} - \dfrac{{\text{1}}}{{{\text{n}}_{{\text{higher}}}^2}}} \right]\]
Complete answer
${\buildrel _{\circ} \over {\mathrm{A}}}$
The formula to determine the wavelength of transitions in hydrogen spectrum is as follows:
\[\dfrac{{\text{1}}}{{{\lambda }}} = \,{{\text{R}}_{\text{H}}}\left[ {\dfrac{{\text{1}}}{{{\text{n}}_{{\text{Lower}}}^{\text{2}}}} - \dfrac{{\text{1}}}{{{\text{n}}_{{\text{higher}}}^2}}} \right]\]
where,
\[{{\lambda }}\] is the wavelength.
\[{{\text{R}}_{\text{H}}}\] is the Rydberg constant.
The value of the Rydberg constant is .
\[{{\text{n}}_{{\text{lower}}}}\] is the principle quantum of the energy level in which the electron comes.
\[{{\text{n}}_{{\text{higher}}}}\] is the principle quantum of the energy level from which the electron comes.
Determine the Rydberg constant. Value as follows:
For the transition ${{\text{n}}_{\text{5}}}\, \to {{\text{n}}_{\text{3}}}$,
Substitute ${\text{12818}}{{\buildrel _{\circ} \over {\mathrm{A}}}}$ for wavelength, $3$ for \[{{\text{n}}_{{\text{lower}}}}\] and $5$ for \[{{\text{n}}_{{\text{higher}}}}\].
\[\dfrac{{\text{1}}}{{12818\,{\buildrel _{\circ} \over {\mathrm{A}}}}} = \,{{\text{R}}_{\text{H}}}\left[ {\dfrac{{\text{1}}}{{{3^2}}} - \dfrac{{\text{1}}}{{{5^2}}}} \right]\]
\[\Rightarrow \dfrac{{\text{1}}}{{12818}} = \,{{\text{R}}_{\text{H}}}\left[ {\dfrac{{25 - 9}}{{225}}} \right]\]
\[\Rightarrow {{\text{R}}_{\text{H}}}\,\, = \,\dfrac{{225}}{{12818\,{\buildrel _{\circ} \over {\mathrm{A}}}\, \times \,16}}\]
\[\Rightarrow {{\text{R}}_{\text{H}}}\,\, = \dfrac{1.1 \times {10^{ - 3}}\,}{{\buildrel _{\circ} \over {\mathrm{A}}}}\]
So, the Rydberg constant is $\dfrac{1.1 \times {10^{ - 3}}}{{\buildrel _{\circ} \over {\mathrm{A}}}}$.
For the transition ${{\text{n}}_3}\, \to {{\text{n}}_1}$,
Substitute for Rydberg constant, $1$ for \[{{\text{n}}_{{\text{lower}}}}\] and $3$ for \[{{\text{n}}_{{\text{higher}}}}\].
\[\Rightarrow \dfrac{{\text{1}}}{{{\lambda }}} = \dfrac{1.1 \times {10^{ - 3}}\,}{{\buildrel _{\circ} \over {\mathrm{A}}}}\times\left[ {\dfrac{{\text{1}}}{{{3^2}}} - \dfrac{{\text{1}}}{{{1^2}}}} \right]\]
\[\Rightarrow \dfrac{{\text{1}}}{{{\lambda }}} = \dfrac{1.1 \times {10^{ - 3}}\,}{{\buildrel _{\circ} \over {\mathrm{A}}}}\times \left[ {\dfrac{{9 - 1}}{9}} \right]\]
\[\Rightarrow \dfrac{{\text{1}}}{{{\lambda }}} = \dfrac{1.1 \times {10^{ - 3}}}{{\buildrel _{\circ} \over {\mathrm{A}}}}\times \dfrac{8}{9}\,\]
\[\Rightarrow \dfrac{{\text{1}}}{{{\lambda }}} = \,\,9.75 \times {10^{ - 4}}/{\buildrel _{\circ} \over {\mathrm{A}}}\]
\[\Rightarrow {{\lambda }} = 1025\,{\buildrel _{\circ} \over {\mathrm{A}}}\]
So, the wavelength of the photon emitted when electron falls from third to ground level is ${\text{1025}}\,\,{\buildrel _{\circ} \over {\mathrm{A}}}$.
Therefore, option (A) ${\text{1025}}\,\,{\buildrel _{\circ} \over {\mathrm{A}}}$ is correct.
Note:The relation between energy and wavelength is as follows: ${\text{E = }}\dfrac{{{\text{hc}}}}{{{\lambda }}}$ . Wavelength and energy are inversely proportional. Wavelength of ${{\text{n}}_{\text{5}}}\, \to {{\text{n}}_{\text{3}}}$transition is ${\text{12818}}\,\,{\buildrel _{\circ} \over {\mathrm{A}}}$ whereas the wavelength of ${{\text{n}}_3}\, \to {{\text{n}}_1}$transition is ${\text{1025}}\,{\buildrel _{\circ} \over {\mathrm{A}}}$ means high energy is required for ${{\text{n}}_3}\, \to {{\text{n}}_1}$ transition because lower energy are more stable. In hydrogen, the lines arise when electron comes from third energy level to lower energy level of Principle quantum number one ${{\text{n}}_3}\, \to {{\text{n}}_1}$ is known as Lyman series. The lines arise when electron comes from fifth energy level to lower energy level of Principle quantum number three ${{\text{n}}_{\text{5}}}\, \to {{\text{n}}_{\text{3}}}$ is known as Paschen series.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

