
A hot dog factory must ensure that its hot dogs are between $6\dfrac{1}{4}$ inches and $6\dfrac{3}{4}$inches in length. If $h$is the length of a hot dog from this factory, then which of the following inequalities correctly, expresses the accepted values of $h$?
A) \[\left| {h - 6\dfrac{1}{2}} \right| < \dfrac{1}{2}\]
B) \[\left| {h - 6\dfrac{1}{4}} \right| < \dfrac{1}{2}\]
C) \[\left| {h - 6\dfrac{1}{2}} \right| < \dfrac{1}{4}\]
D) \[\left| {h - 6\dfrac{1}{4}} \right| < \dfrac{1}{4}\]
Answer
597.9k+ views
Hint: First write the given condition in the mathematical form which will be in the form of inequality.
Use the property of the modulus function which states that if $|x| < a$ then $ - a < x < a$
Complete step-by-step answer:
We are given that the length $h$ of the hot dogs are between $6\dfrac{1}{4}$ inches and $6\dfrac{3}{4}$inches.
We have to express it in the form of inequality.
First, we write the given condition in the mathematical form.
That is, $6\dfrac{1}{4} < h < 6\dfrac{3}{4}$
Simplify the inequality.
$\dfrac{{25}}{4} < h < \dfrac{{27}}{4}.......(1)$
Now we check each option, the option which gives the condition (1) will be our answer.
Option -A
Given that \[\left| {h - 6\dfrac{1}{2}} \right| < \dfrac{1}{2}\]
Use the property of the modulus function which states that if $|x| < a$ then $ - a < x < a$
Our inequality will be,
$\dfrac{{ - 1}}{2} < h - 6\dfrac{1}{2} < \dfrac{1}{2}$
Solve the inequality.
$
\dfrac{{ - 1}}{2} < h - \dfrac{{13}}{2} < \dfrac{1}{2} \\
\dfrac{{ - 1}}{2} + \dfrac{{13}}{2} < h - \dfrac{{13}}{2} + \dfrac{{13}}{2} < \dfrac{1}{2} + \dfrac{{13}}{2} \\
6 < h < 7 \\
$
This does not give the inequality (1) therefore, this cannot be the answer.
Option -B
Given that \[\left| {h - 6\dfrac{1}{4}} \right| < \dfrac{1}{2}\]
Use the property of the modulus function which states that if $|x| < a$ then $ - a < x < a$
Our inequality will be,
$\dfrac{{ - 1}}{2} < h - 6\dfrac{1}{4} < \dfrac{1}{2}$
Solve the inequality.
$
\dfrac{{ - 1}}{2} < h - \dfrac{{25}}{4} < \dfrac{1}{2} \\
\dfrac{{ - 1}}{2} + \dfrac{{25}}{4} < h - \dfrac{{25}}{4} + \dfrac{{25}}{4} < \dfrac{1}{2} + \dfrac{{25}}{4} \\
\dfrac{{23}}{4} < h < \dfrac{{25}}{4} \\
$
This does not give the inequality (1) therefore, this cannot be the answer.
Option- C
Given that \[\left| {h - 6\dfrac{1}{2}} \right| < \dfrac{1}{4}\]
Use the property of the modulus function which states that if $|x| < a$ then $ - a < x < a$
Our inequality will be,
$\dfrac{{ - 1}}{4} < h - 6\dfrac{1}{2} < \dfrac{1}{4}$
Solve the inequality.
$
\dfrac{{ - 1}}{4} < h - \dfrac{{13}}{2} < \dfrac{1}{4} \\
\dfrac{{ - 1}}{4} + \dfrac{{13}}{2} < h - \dfrac{{13}}{2} + \dfrac{{13}}{2} < \dfrac{1}{4} + \dfrac{{13}}{2} \\
\dfrac{{25}}{4} < h < \dfrac{{27}}{4} \\
$
This gives the inequality (1) therefore, this will be our answer.
Option -D
Given that \[\left| {h - 6\dfrac{1}{4}} \right| < \dfrac{1}{4}\]
Use the property of the modulus function which states that if $|x| < a$ then $ - a < x < a$
Our inequality will be,
$\dfrac{{ - 1}}{4} < h - 6\dfrac{1}{4} < \dfrac{1}{4}$
Solve the inequality.
$
\dfrac{{ - 1}}{4} < h - \dfrac{{25}}{4} < \dfrac{1}{4} \\
\dfrac{{ - 1}}{4} + \dfrac{{25}}{4} < h - \dfrac{{25}}{4} + \dfrac{{25}}{4} < \dfrac{1}{4} + \dfrac{{25}}{4} \\
6 < h < \dfrac{{26}}{4} \\
$
This does not give the inequality (1) therefore, this cannot be the answer.
Hence, option (C) is correct.
Note: We can solve this question by another method which is shown below.
The given inequality is
$6\dfrac{1}{4} < h < 6\dfrac{3}{4}$
Subtract $6\dfrac{1}{2}$from all the three parts.
$
6\dfrac{1}{4} - 6\dfrac{1}{2} < h - 6\dfrac{1}{2} < 6\dfrac{3}{4} - 6\dfrac{1}{2} \\
\dfrac{{25}}{4} - \dfrac{{13}}{2} < h - 6\dfrac{1}{2} < \dfrac{{27}}{4} - \dfrac{{13}}{2} \\
\dfrac{{ - 1}}{4} < h - 6\dfrac{1}{2} < \dfrac{1}{4} \\
$
Use the property of the modulus function which states that if $ - a < x < a$ then $|x| < a$.
Hence, \[\left| {h - 6\dfrac{1}{2}} \right| < \dfrac{1}{4}\]
Use the property of the modulus function which states that if $|x| < a$ then $ - a < x < a$
Complete step-by-step answer:
We are given that the length $h$ of the hot dogs are between $6\dfrac{1}{4}$ inches and $6\dfrac{3}{4}$inches.
We have to express it in the form of inequality.
First, we write the given condition in the mathematical form.
That is, $6\dfrac{1}{4} < h < 6\dfrac{3}{4}$
Simplify the inequality.
$\dfrac{{25}}{4} < h < \dfrac{{27}}{4}.......(1)$
Now we check each option, the option which gives the condition (1) will be our answer.
Option -A
Given that \[\left| {h - 6\dfrac{1}{2}} \right| < \dfrac{1}{2}\]
Use the property of the modulus function which states that if $|x| < a$ then $ - a < x < a$
Our inequality will be,
$\dfrac{{ - 1}}{2} < h - 6\dfrac{1}{2} < \dfrac{1}{2}$
Solve the inequality.
$
\dfrac{{ - 1}}{2} < h - \dfrac{{13}}{2} < \dfrac{1}{2} \\
\dfrac{{ - 1}}{2} + \dfrac{{13}}{2} < h - \dfrac{{13}}{2} + \dfrac{{13}}{2} < \dfrac{1}{2} + \dfrac{{13}}{2} \\
6 < h < 7 \\
$
This does not give the inequality (1) therefore, this cannot be the answer.
Option -B
Given that \[\left| {h - 6\dfrac{1}{4}} \right| < \dfrac{1}{2}\]
Use the property of the modulus function which states that if $|x| < a$ then $ - a < x < a$
Our inequality will be,
$\dfrac{{ - 1}}{2} < h - 6\dfrac{1}{4} < \dfrac{1}{2}$
Solve the inequality.
$
\dfrac{{ - 1}}{2} < h - \dfrac{{25}}{4} < \dfrac{1}{2} \\
\dfrac{{ - 1}}{2} + \dfrac{{25}}{4} < h - \dfrac{{25}}{4} + \dfrac{{25}}{4} < \dfrac{1}{2} + \dfrac{{25}}{4} \\
\dfrac{{23}}{4} < h < \dfrac{{25}}{4} \\
$
This does not give the inequality (1) therefore, this cannot be the answer.
Option- C
Given that \[\left| {h - 6\dfrac{1}{2}} \right| < \dfrac{1}{4}\]
Use the property of the modulus function which states that if $|x| < a$ then $ - a < x < a$
Our inequality will be,
$\dfrac{{ - 1}}{4} < h - 6\dfrac{1}{2} < \dfrac{1}{4}$
Solve the inequality.
$
\dfrac{{ - 1}}{4} < h - \dfrac{{13}}{2} < \dfrac{1}{4} \\
\dfrac{{ - 1}}{4} + \dfrac{{13}}{2} < h - \dfrac{{13}}{2} + \dfrac{{13}}{2} < \dfrac{1}{4} + \dfrac{{13}}{2} \\
\dfrac{{25}}{4} < h < \dfrac{{27}}{4} \\
$
This gives the inequality (1) therefore, this will be our answer.
Option -D
Given that \[\left| {h - 6\dfrac{1}{4}} \right| < \dfrac{1}{4}\]
Use the property of the modulus function which states that if $|x| < a$ then $ - a < x < a$
Our inequality will be,
$\dfrac{{ - 1}}{4} < h - 6\dfrac{1}{4} < \dfrac{1}{4}$
Solve the inequality.
$
\dfrac{{ - 1}}{4} < h - \dfrac{{25}}{4} < \dfrac{1}{4} \\
\dfrac{{ - 1}}{4} + \dfrac{{25}}{4} < h - \dfrac{{25}}{4} + \dfrac{{25}}{4} < \dfrac{1}{4} + \dfrac{{25}}{4} \\
6 < h < \dfrac{{26}}{4} \\
$
This does not give the inequality (1) therefore, this cannot be the answer.
Hence, option (C) is correct.
Note: We can solve this question by another method which is shown below.
The given inequality is
$6\dfrac{1}{4} < h < 6\dfrac{3}{4}$
Subtract $6\dfrac{1}{2}$from all the three parts.
$
6\dfrac{1}{4} - 6\dfrac{1}{2} < h - 6\dfrac{1}{2} < 6\dfrac{3}{4} - 6\dfrac{1}{2} \\
\dfrac{{25}}{4} - \dfrac{{13}}{2} < h - 6\dfrac{1}{2} < \dfrac{{27}}{4} - \dfrac{{13}}{2} \\
\dfrac{{ - 1}}{4} < h - 6\dfrac{1}{2} < \dfrac{1}{4} \\
$
Use the property of the modulus function which states that if $ - a < x < a$ then $|x| < a$.
Hence, \[\left| {h - 6\dfrac{1}{2}} \right| < \dfrac{1}{4}\]
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

