
A gas mixture contains one-mole \[\mathop O\nolimits_2 \] gas and one mole of \[He\] gas. Find the ratio of specific heat at constant pressure to that at constant volume of gaseous mixture.
(A) 2
(B) 1.5
(C) 2.5
(D) 4
Answer
585.6k+ views
Hint:The Heat capacity is the change in temperature of a given sample for a given amount of heat. TheSI Units of specific heat is joule per kelvin \[(J{\text{ }}k{g^{ - 1}}).\]Specific Heat Capacity is different from Heat Capacity, which represents the amount of heat needed to raise the temperature of a 1kg mass of a substance \[{1^o}C\]. If the heat transfer to the sample is done when it is held at constant pressure, then the specific heat obtained using this method is called Molar Specific Heat Capacity at Constant Pressure. If the heat transfer to the sample is done when the volume of the sample is held constant, then the specific heat obtained using this method is called Molar Specific Heat Capacity at Constant Volume.
We Should know the \[{C_P}and{\text{ }}{C_V}\] values of monoatomic gases and diatomic gases.
\[\mathop O\nolimits_2 \] Is a diatomic gas.
\[He\] Is a monatomic gas.
\[\dfrac{{\mathop C\nolimits_P }}{{\mathop C\nolimits_V }} = R\], We have to find R.
Complete step by step answer:
Method 1:
-\[\mathop O\nolimits_2 \] is a diatomic gas.
\[\mathop C\nolimits_P = \dfrac{7}{2}R\]
\[\mathop C\nolimits_V = \dfrac{5}{2}R\]
-\[He\] is a monatomic gas.
\[\mathop C\nolimits_P = \dfrac{5}{2}R\]
\[\mathop C\nolimits_V = \dfrac{3}{2}R\]
So the \[\mathop C\nolimits_P \] value of gaseous mixture is,
\[\mathop C\nolimits_P \]\[\left( {Mixture} \right){\text{ }} = \;\]\[\dfrac{{\mathop C\nolimits_P (\mathop O\nolimits_2 ) + \mathop C\nolimits_P (He)}}{2}\]
\[\begin{gathered}
= \dfrac{{\dfrac{7}{2}R + \dfrac{5}{2}R}}{2} \\
= \dfrac{{12}}{4}R \\
\end{gathered} \]
\[\mathop C\nolimits_V \] Value of gaseous mixture is,
\[\mathop C\nolimits_V \]\[\left( {Mixture} \right){\text{ }} = \;\]\[\dfrac{{\mathop C\nolimits_V (\mathop O\nolimits_2 ) + \mathop C\nolimits_V (He)}}{2}\]
\[\begin{gathered}
= \dfrac{{\dfrac{5}{2}R + \dfrac{3}{2}R}}{2} \\
= \dfrac{8}{4}R \\
\end{gathered} \]
So,\[\dfrac{{\mathop C\nolimits_P }}{{\mathop C\nolimits_V }} = R\]
\[\dfrac{{\mathop C\nolimits_P }}{{\mathop C\nolimits_V }} =\dfrac{{\dfrac{{12}}{4}R}}{{\dfrac{8}{4}R}}\]
\[\begin{gathered}
= \dfrac{{12}}{8} = \dfrac{3}{2} \\
= 1.5 \\
\end{gathered} \]
The Option (B) is correct.
Method 2:
Helium \[\left( {He} \right)\] is a monatomic gas.
Oxygen \[\left( {O2} \right)\] is a diatomic gas.
For a monatomic gas and a diatomic gas, value of \[\mathop C\nolimits_V \]is \[\dfrac{3}{2}R\] and \[\dfrac{5}{2}R\] respectively.
For a gaseous mixture,
\[\;\mathop C\nolimits_V (mixture){\text{ }} = {\text{ }}\dfrac{{\left[ {\mathop n\nolimits_1 {\text{ }} \cdot \mathop C\nolimits_{\mathop V\nolimits_1 } {\text{ }} + {\text{ }}\mathop n\nolimits_2 \cdot \mathop C\nolimits_{\mathop V\nolimits_2 } } \right]}}{{\left[ {\mathop n\nolimits_1 + \mathop n\nolimits_2 } \right]}}{\text{ }}\]
Hence for the given mixture,
\[\;\mathop C\nolimits_V (mixture){\text{ = }}\dfrac{{[2 \cdot \dfrac{3}{2} + 1 \cdot \dfrac{5}{2}]}}{{2 + 1}}{\text{R }}\]
\[\begin{gathered}
= \dfrac{{\dfrac{{11}}{2}}}{3}R \\
= \dfrac{{11}}{6}R \\
\end{gathered} \]
Now since
\[\begin{gathered}
\;\mathop C\nolimits_P - \;\mathop C\nolimits_V = R \\
\;\mathop C\nolimits_P = \mathop C\nolimits_V + R \\
\mathop C\nolimits_p = \dfrac{{11}}{6}R + R \\
\end{gathered} \].
\[ = \dfrac{{17}}{6}R\]
So we get,
\[\dfrac{{\mathop C\nolimits_P }}{{\mathop C\nolimits_V }} = \dfrac{{\dfrac{{17}}{6}R}}{{\dfrac{{11}}{6}R}}\]
\[ = \dfrac{{17}}{{11}}\]
\[ = 1.5\]
So, the Option (B) is correct.
Note:Don’t interchange n1 and n2 in\[\;\mathop C\nolimits_V (mixture){\text{ }} = {\text{ }}\dfrac{{\left[ {\mathop n\nolimits_1 {\text{ }} \cdot \mathop C\nolimits_{\mathop V\nolimits_1 } {\text{ }} + {\text{ }}\mathop n\nolimits_2 \cdot \mathop C\nolimits_{\mathop V\nolimits_2 } } \right]}}{{\left[ {\mathop n\nolimits_1 + \mathop n\nolimits_2 } \right]}}{\text{ }}\].
Find either \[\mathop C\nolimits_V \]or \[\mathop C\nolimits_P \]and substitute it in\[\mathop C\nolimits_P - \;\mathop C\nolimits_V = R\].
We Should know the \[{C_P}and{\text{ }}{C_V}\] values of monoatomic gases and diatomic gases.
\[\mathop O\nolimits_2 \] Is a diatomic gas.
\[He\] Is a monatomic gas.
\[\dfrac{{\mathop C\nolimits_P }}{{\mathop C\nolimits_V }} = R\], We have to find R.
Complete step by step answer:
Method 1:
-\[\mathop O\nolimits_2 \] is a diatomic gas.
\[\mathop C\nolimits_P = \dfrac{7}{2}R\]
\[\mathop C\nolimits_V = \dfrac{5}{2}R\]
-\[He\] is a monatomic gas.
\[\mathop C\nolimits_P = \dfrac{5}{2}R\]
\[\mathop C\nolimits_V = \dfrac{3}{2}R\]
So the \[\mathop C\nolimits_P \] value of gaseous mixture is,
\[\mathop C\nolimits_P \]\[\left( {Mixture} \right){\text{ }} = \;\]\[\dfrac{{\mathop C\nolimits_P (\mathop O\nolimits_2 ) + \mathop C\nolimits_P (He)}}{2}\]
\[\begin{gathered}
= \dfrac{{\dfrac{7}{2}R + \dfrac{5}{2}R}}{2} \\
= \dfrac{{12}}{4}R \\
\end{gathered} \]
\[\mathop C\nolimits_V \] Value of gaseous mixture is,
\[\mathop C\nolimits_V \]\[\left( {Mixture} \right){\text{ }} = \;\]\[\dfrac{{\mathop C\nolimits_V (\mathop O\nolimits_2 ) + \mathop C\nolimits_V (He)}}{2}\]
\[\begin{gathered}
= \dfrac{{\dfrac{5}{2}R + \dfrac{3}{2}R}}{2} \\
= \dfrac{8}{4}R \\
\end{gathered} \]
So,\[\dfrac{{\mathop C\nolimits_P }}{{\mathop C\nolimits_V }} = R\]
\[\dfrac{{\mathop C\nolimits_P }}{{\mathop C\nolimits_V }} =\dfrac{{\dfrac{{12}}{4}R}}{{\dfrac{8}{4}R}}\]
\[\begin{gathered}
= \dfrac{{12}}{8} = \dfrac{3}{2} \\
= 1.5 \\
\end{gathered} \]
The Option (B) is correct.
Method 2:
Helium \[\left( {He} \right)\] is a monatomic gas.
Oxygen \[\left( {O2} \right)\] is a diatomic gas.
For a monatomic gas and a diatomic gas, value of \[\mathop C\nolimits_V \]is \[\dfrac{3}{2}R\] and \[\dfrac{5}{2}R\] respectively.
For a gaseous mixture,
\[\;\mathop C\nolimits_V (mixture){\text{ }} = {\text{ }}\dfrac{{\left[ {\mathop n\nolimits_1 {\text{ }} \cdot \mathop C\nolimits_{\mathop V\nolimits_1 } {\text{ }} + {\text{ }}\mathop n\nolimits_2 \cdot \mathop C\nolimits_{\mathop V\nolimits_2 } } \right]}}{{\left[ {\mathop n\nolimits_1 + \mathop n\nolimits_2 } \right]}}{\text{ }}\]
Hence for the given mixture,
\[\;\mathop C\nolimits_V (mixture){\text{ = }}\dfrac{{[2 \cdot \dfrac{3}{2} + 1 \cdot \dfrac{5}{2}]}}{{2 + 1}}{\text{R }}\]
\[\begin{gathered}
= \dfrac{{\dfrac{{11}}{2}}}{3}R \\
= \dfrac{{11}}{6}R \\
\end{gathered} \]
Now since
\[\begin{gathered}
\;\mathop C\nolimits_P - \;\mathop C\nolimits_V = R \\
\;\mathop C\nolimits_P = \mathop C\nolimits_V + R \\
\mathop C\nolimits_p = \dfrac{{11}}{6}R + R \\
\end{gathered} \].
\[ = \dfrac{{17}}{6}R\]
So we get,
\[\dfrac{{\mathop C\nolimits_P }}{{\mathop C\nolimits_V }} = \dfrac{{\dfrac{{17}}{6}R}}{{\dfrac{{11}}{6}R}}\]
\[ = \dfrac{{17}}{{11}}\]
\[ = 1.5\]
So, the Option (B) is correct.
Note:Don’t interchange n1 and n2 in\[\;\mathop C\nolimits_V (mixture){\text{ }} = {\text{ }}\dfrac{{\left[ {\mathop n\nolimits_1 {\text{ }} \cdot \mathop C\nolimits_{\mathop V\nolimits_1 } {\text{ }} + {\text{ }}\mathop n\nolimits_2 \cdot \mathop C\nolimits_{\mathop V\nolimits_2 } } \right]}}{{\left[ {\mathop n\nolimits_1 + \mathop n\nolimits_2 } \right]}}{\text{ }}\].
Find either \[\mathop C\nolimits_V \]or \[\mathop C\nolimits_P \]and substitute it in\[\mathop C\nolimits_P - \;\mathop C\nolimits_V = R\].
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

10 examples of friction in our daily life

