
A gas mixture contains 50% helium and 50% methane by volume. What is the percent by weight of methane in the mixture?
A. 88.89%
B. 20%
C. 71.43%
D. 80%
Answer
572.1k+ views
Hint: Using the % volume of helium and methane gas calculate the volume ratio of helium to methane gas. Using the relation of the volume of gas with moles of gas at constant temperature and pressure determine the mole ratio of helium to methane gas. Finally, using the weight of methane gas and weight of mixture calculate the percent by weight of methane in the mixture.
Formula Used:
\[\dfrac{{{V_1}}}{{{V_2}}} = \dfrac{{{n_1}}}{{{n_2}}}\]
\[{\% \text{ Weight = }}\dfrac{{{\text{Weight of gas}}}}{{{\text{Total weight of the mixture}}}} \times 100\% \]
Complete step by step answer:
Calculate the volume ratio of helium to methane gas as follows:
A gas mixture contains 50% helium and 50% methane by volume.
So,
\[\dfrac{{{\% \text{ Volume of He}}}}{{{\%\text{ Volume C}}{{\text{H}}_{\text{4}}}}} = \dfrac{{50\% }}{{50\% }} = \dfrac{1}{1}\]
Avogadro’s law states that at constant pressure and temperature, the volume of gas is directly proportional to the number of moles of gas.
Thus, \[\dfrac{{{V_1}}}{{{V_2}}} = \dfrac{{{n_1}}}{{{n_2}}}\]
As \[\dfrac{{{\%\text{ Volume of He}}}}{{{\%\text{ Volume C}}{{\text{H}}_{\text{4}}}}} = \dfrac{1}{1}\]
So, \[\dfrac{{{\text{moles of He}}}}{{{\text{moles C}}{{\text{H}}_{\text{4}}}}} = \dfrac{1}{1}\]
Calculate the percent by weight of methane in the mixture as follows:
Mass of 1 mole of \[{\text{C}}{{\text{H}}_{\text{4}}}\] = 16g
Mass of 1 mole of $He$ = 4g
The total mass of the mixture of gas = 16g+4g =20g
Now, we have a mass of methane gas and a mass of the mixture of gas.
So, \[{\% \text{ Weight = }}\dfrac{{{\text{Weight of gas}}}}{{{\text{Total weight of the mixture}}}} \times 100\% \]
Substitute 16g for the weight of methane gas and 20 g for the weight of the mixture of gas and calculate the percent weight of methane gas in the mixture.
\[\Rightarrow {\% \text{ Weight C}}{{\text{H}}_{\text{4}}}{\text{ = }}\dfrac{{{\text{16g}}}}{{20}} \times 100\% \]
\[\Rightarrow {\% \text{ Weight C}}{{\text{H}}_{\text{4}}}{\text{ = 80}\% }\]
Thus, the percent by weight of methane in the mixture is 80%.
Hence, the correct option is (D) 80%
Note:
According to Avogadro’s law, the constant temperature and pressure ratio of the volume of gases is equal to the ratio of moles of gases. The molecular weight of a substance is a mass of 1 mole of the substance.
Formula Used:
\[\dfrac{{{V_1}}}{{{V_2}}} = \dfrac{{{n_1}}}{{{n_2}}}\]
\[{\% \text{ Weight = }}\dfrac{{{\text{Weight of gas}}}}{{{\text{Total weight of the mixture}}}} \times 100\% \]
Complete step by step answer:
Calculate the volume ratio of helium to methane gas as follows:
A gas mixture contains 50% helium and 50% methane by volume.
So,
\[\dfrac{{{\% \text{ Volume of He}}}}{{{\%\text{ Volume C}}{{\text{H}}_{\text{4}}}}} = \dfrac{{50\% }}{{50\% }} = \dfrac{1}{1}\]
Avogadro’s law states that at constant pressure and temperature, the volume of gas is directly proportional to the number of moles of gas.
Thus, \[\dfrac{{{V_1}}}{{{V_2}}} = \dfrac{{{n_1}}}{{{n_2}}}\]
As \[\dfrac{{{\%\text{ Volume of He}}}}{{{\%\text{ Volume C}}{{\text{H}}_{\text{4}}}}} = \dfrac{1}{1}\]
So, \[\dfrac{{{\text{moles of He}}}}{{{\text{moles C}}{{\text{H}}_{\text{4}}}}} = \dfrac{1}{1}\]
Calculate the percent by weight of methane in the mixture as follows:
Mass of 1 mole of \[{\text{C}}{{\text{H}}_{\text{4}}}\] = 16g
Mass of 1 mole of $He$ = 4g
The total mass of the mixture of gas = 16g+4g =20g
Now, we have a mass of methane gas and a mass of the mixture of gas.
So, \[{\% \text{ Weight = }}\dfrac{{{\text{Weight of gas}}}}{{{\text{Total weight of the mixture}}}} \times 100\% \]
Substitute 16g for the weight of methane gas and 20 g for the weight of the mixture of gas and calculate the percent weight of methane gas in the mixture.
\[\Rightarrow {\% \text{ Weight C}}{{\text{H}}_{\text{4}}}{\text{ = }}\dfrac{{{\text{16g}}}}{{20}} \times 100\% \]
\[\Rightarrow {\% \text{ Weight C}}{{\text{H}}_{\text{4}}}{\text{ = 80}\% }\]
Thus, the percent by weight of methane in the mixture is 80%.
Hence, the correct option is (D) 80%
Note:
According to Avogadro’s law, the constant temperature and pressure ratio of the volume of gases is equal to the ratio of moles of gases. The molecular weight of a substance is a mass of 1 mole of the substance.
Recently Updated Pages
Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Class 10 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

10 examples of friction in our daily life

