
A fraction becomes \[\dfrac{9}{11}\], if 1 is added to both the numerator and denominator. If 3 is added to both the numerator and the denominator it becomes \[\dfrac{5}{6}\]. Find the fraction.
Answer
619.5k+ views
Hint: Here, first of all, assume a fraction \[\dfrac{N}{D}\]. Now, add 1 to both N and D and equate it to \[\dfrac{9}{11}\]. Similarly, add 3 to both N and D and equate it to \[\dfrac{5}{6}\]. Solve these two equations to get the value of \[\dfrac{N}{D}\].
Complete step-by-step answer:
We are given that a fraction becomes \[\dfrac{9}{11}\] if 1 is added to both numerator and denominator whereas if 3 is added to both numerator and denominator, it becomes \[\dfrac{5}{6}\]. We have to find the value of the fraction.
Let us consider our original fraction as \[\dfrac{N}{D}\], where N is the numerator, and D is the denominator of the original fraction.
Now, we are given that if we add 1 to both numerator and denominator, it becomes \[\dfrac{9}{11}\]. So, by adding 1 to both numerator and denominator of the original fraction \[\dfrac{N}{D}\], we get,
\[\dfrac{N+1}{D+1}=\dfrac{9}{11}\]
By cross multiplying the above the equation, we get,
\[11N+11=9D+9\]
By simplifying the above equation, we get,
\[9D11N=2\ldots ..\left( i \right)\]
Now, we are also given that, if we add 3 to both numerator and denominator, it becomes \[\dfrac{5}{6}\]. So, by adding 3 to both the sides of the numerator and denominator of the original fraction \[\dfrac{N}{D}\], we get,
\[\dfrac{N+3}{D+3}=\dfrac{5}{6}\]
By cross multiplying the above equation, we get,
\[6N+18=5D+15\]
By simplifying the above equation, we get,
\[5D-6N=3.....\left( ii \right)\]
By multiplying 5 on both the sides of the equation (i), we get,
\[45D-55N=10....\left( iii \right)\]
Also, by multiplying 9 on both the sides of equation (ii), we get,
\[45D-54N=27....\left( iv \right)\]
Now, by subtracting equation (iv) from (iii), we get,
\[\left( 45D-55N \right)-\left( 45D-54N \right)=10-27\]
By simplifying the above equation, we get,
\[-55N+54N=-17\]
\[\Rightarrow -N=-17\]
So, we get N = 17.
By substituting N = 17 in equation (i), we get,
\[9D-11\left( 17 \right)=2\]
\[\Rightarrow 9D=2+187\]
Or, \[9D=189\]
By dividing 9 on both the sides, we get,
\[D=\dfrac{189}{9}=21\]
So, we get D = 21.
We know that our fraction is \[\dfrac{N}{D}\], so by substituting the values of N and D in the original fraction, we get,
Original fraction \[=\dfrac{N}{D}=\dfrac{17}{21}\].
So, we get the original fraction as \[\dfrac{17}{21}\].
Note: Students can cross-check their answer as follows:
We know that \[\dfrac{N+1}{D+1}=\dfrac{9}{11}\]
By substituting N = 17 and D = 21, we get,
\[\dfrac{17+1}{21+1}=\dfrac{9}{11}\]
\[\Rightarrow \dfrac{18}{22}=\dfrac{9}{11}\]
By simplifying LHS of the above equation, we get,
\[\dfrac{9}{11}=\dfrac{9}{11}\]
LHS = RHS
Since, LHS = RHS, therefore our answer is correct. Similarly, students can also check by substituting N and D in the other equations.
Complete step-by-step answer:
We are given that a fraction becomes \[\dfrac{9}{11}\] if 1 is added to both numerator and denominator whereas if 3 is added to both numerator and denominator, it becomes \[\dfrac{5}{6}\]. We have to find the value of the fraction.
Let us consider our original fraction as \[\dfrac{N}{D}\], where N is the numerator, and D is the denominator of the original fraction.
Now, we are given that if we add 1 to both numerator and denominator, it becomes \[\dfrac{9}{11}\]. So, by adding 1 to both numerator and denominator of the original fraction \[\dfrac{N}{D}\], we get,
\[\dfrac{N+1}{D+1}=\dfrac{9}{11}\]
By cross multiplying the above the equation, we get,
\[11N+11=9D+9\]
By simplifying the above equation, we get,
\[9D11N=2\ldots ..\left( i \right)\]
Now, we are also given that, if we add 3 to both numerator and denominator, it becomes \[\dfrac{5}{6}\]. So, by adding 3 to both the sides of the numerator and denominator of the original fraction \[\dfrac{N}{D}\], we get,
\[\dfrac{N+3}{D+3}=\dfrac{5}{6}\]
By cross multiplying the above equation, we get,
\[6N+18=5D+15\]
By simplifying the above equation, we get,
\[5D-6N=3.....\left( ii \right)\]
By multiplying 5 on both the sides of the equation (i), we get,
\[45D-55N=10....\left( iii \right)\]
Also, by multiplying 9 on both the sides of equation (ii), we get,
\[45D-54N=27....\left( iv \right)\]
Now, by subtracting equation (iv) from (iii), we get,
\[\left( 45D-55N \right)-\left( 45D-54N \right)=10-27\]
By simplifying the above equation, we get,
\[-55N+54N=-17\]
\[\Rightarrow -N=-17\]
So, we get N = 17.
By substituting N = 17 in equation (i), we get,
\[9D-11\left( 17 \right)=2\]
\[\Rightarrow 9D=2+187\]
Or, \[9D=189\]
By dividing 9 on both the sides, we get,
\[D=\dfrac{189}{9}=21\]
So, we get D = 21.
We know that our fraction is \[\dfrac{N}{D}\], so by substituting the values of N and D in the original fraction, we get,
Original fraction \[=\dfrac{N}{D}=\dfrac{17}{21}\].
So, we get the original fraction as \[\dfrac{17}{21}\].
Note: Students can cross-check their answer as follows:
We know that \[\dfrac{N+1}{D+1}=\dfrac{9}{11}\]
By substituting N = 17 and D = 21, we get,
\[\dfrac{17+1}{21+1}=\dfrac{9}{11}\]
\[\Rightarrow \dfrac{18}{22}=\dfrac{9}{11}\]
By simplifying LHS of the above equation, we get,
\[\dfrac{9}{11}=\dfrac{9}{11}\]
LHS = RHS
Since, LHS = RHS, therefore our answer is correct. Similarly, students can also check by substituting N and D in the other equations.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

Trending doubts
What are the factors of 100 class 7 maths CBSE

The value of 6 more than 7 is A 1 B 1 C 13 D 13 class 7 maths CBSE

Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE

Convert 200 Million dollars in rupees class 7 maths CBSE

AIM To prepare stained temporary mount of onion peel class 7 biology CBSE

Write a letter to the editor of the national daily class 7 english CBSE


