
A father is now three times as old as his son. Five years ago he was four times as old as his son. The age of the son(in years) is
A) \[12\]
B) \[15\]
C) \[18\]
D) \[20\]
Answer
573.3k+ views
Hint: Firstly we need to know about the age and then convert the problem in the form of the linear equation or we can say in terms of variables the in this type of the problem we need use the concept of the age After that we can calculate the value of the variables .
Complete step-by-step solution:
Let the age of the son is \[x\] then age of the father is three times the age of the son then father age is \[3x\]
Five years back,
Age of the son \[ = x - 5\]
Five years back age of the father\[ = 3x - 5\]
According to the question
Fathers age \[ = \]four times the age of the son
$\Rightarrow$\[3x - 5 = 4\left( {x - 5} \right)\]
Multiplied by \[4\] in \[x - 5\]we get
$\Rightarrow$\[3x - 5 = 4x - 20\]
Rewrite the equation after simplification we get
$\Rightarrow$\[4x - 3x - 20 + 5 = 0\]
Rewrite the equation after simplification we get
$\Rightarrow$\[x - 15 = 0\]
$\Rightarrow$\[x = 15\]
Hence the age of the son is \[15\]
Option B is the correct answer.
Note: This type of problem is solved only by the concept of the age.
In other words we can say that the length of time during which a being or things has existed.
Length of life or existence to the time spoken of or referred to a period of human life , measured by years from birth.
Linear equations in one variable are used when we have one unknown quantity. If we have two unknown quantities we use linear equations in two variables.
Complete step-by-step solution:
Let the age of the son is \[x\] then age of the father is three times the age of the son then father age is \[3x\]
Five years back,
Age of the son \[ = x - 5\]
Five years back age of the father\[ = 3x - 5\]
According to the question
Fathers age \[ = \]four times the age of the son
$\Rightarrow$\[3x - 5 = 4\left( {x - 5} \right)\]
Multiplied by \[4\] in \[x - 5\]we get
$\Rightarrow$\[3x - 5 = 4x - 20\]
Rewrite the equation after simplification we get
$\Rightarrow$\[4x - 3x - 20 + 5 = 0\]
Rewrite the equation after simplification we get
$\Rightarrow$\[x - 15 = 0\]
$\Rightarrow$\[x = 15\]
Hence the age of the son is \[15\]
Option B is the correct answer.
Note: This type of problem is solved only by the concept of the age.
In other words we can say that the length of time during which a being or things has existed.
Length of life or existence to the time spoken of or referred to a period of human life , measured by years from birth.
Linear equations in one variable are used when we have one unknown quantity. If we have two unknown quantities we use linear equations in two variables.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

Convert 40circ C to Fahrenheit A 104circ F B 107circ class 8 maths CBSE

Advantages and disadvantages of science

Right to vote is a AFundamental Right BFundamental class 8 social science CBSE


