
A father is now three times as old as his son. Five years ago he was four times as old as his son. The age of the son(in years) is
A) \[12\]
B) \[15\]
C) \[18\]
D) \[20\]
Answer
561.9k+ views
Hint: Firstly we need to know about the age and then convert the problem in the form of the linear equation or we can say in terms of variables the in this type of the problem we need use the concept of the age After that we can calculate the value of the variables .
Complete step-by-step solution:
Let the age of the son is \[x\] then age of the father is three times the age of the son then father age is \[3x\]
Five years back,
Age of the son \[ = x - 5\]
Five years back age of the father\[ = 3x - 5\]
According to the question
Fathers age \[ = \]four times the age of the son
$\Rightarrow$\[3x - 5 = 4\left( {x - 5} \right)\]
Multiplied by \[4\] in \[x - 5\]we get
$\Rightarrow$\[3x - 5 = 4x - 20\]
Rewrite the equation after simplification we get
$\Rightarrow$\[4x - 3x - 20 + 5 = 0\]
Rewrite the equation after simplification we get
$\Rightarrow$\[x - 15 = 0\]
$\Rightarrow$\[x = 15\]
Hence the age of the son is \[15\]
Option B is the correct answer.
Note: This type of problem is solved only by the concept of the age.
In other words we can say that the length of time during which a being or things has existed.
Length of life or existence to the time spoken of or referred to a period of human life , measured by years from birth.
Linear equations in one variable are used when we have one unknown quantity. If we have two unknown quantities we use linear equations in two variables.
Complete step-by-step solution:
Let the age of the son is \[x\] then age of the father is three times the age of the son then father age is \[3x\]
Five years back,
Age of the son \[ = x - 5\]
Five years back age of the father\[ = 3x - 5\]
According to the question
Fathers age \[ = \]four times the age of the son
$\Rightarrow$\[3x - 5 = 4\left( {x - 5} \right)\]
Multiplied by \[4\] in \[x - 5\]we get
$\Rightarrow$\[3x - 5 = 4x - 20\]
Rewrite the equation after simplification we get
$\Rightarrow$\[4x - 3x - 20 + 5 = 0\]
Rewrite the equation after simplification we get
$\Rightarrow$\[x - 15 = 0\]
$\Rightarrow$\[x = 15\]
Hence the age of the son is \[15\]
Option B is the correct answer.
Note: This type of problem is solved only by the concept of the age.
In other words we can say that the length of time during which a being or things has existed.
Length of life or existence to the time spoken of or referred to a period of human life , measured by years from birth.
Linear equations in one variable are used when we have one unknown quantity. If we have two unknown quantities we use linear equations in two variables.
Recently Updated Pages
Questions & Answers - Ask your doubts

A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Two Planoconcave lenses 1 and 2 of glass of refractive class 12 physics CBSE

The compound 2 methyl 2 butene on reaction with NaIO4 class 12 chemistry CBSE

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Name the states through which the Tropic of Cancer class 8 social science CBSE

Full form of STD, ISD and PCO

Right to vote is a AFundamental Right BFundamental class 8 social science CBSE

Summary of the poem Where the Mind is Without Fear class 8 english CBSE


