
A determinant is given as following:
$\Delta =\left| \begin{matrix}
\sin \theta \cos \phi & \sin \theta \sin \phi & \cos \theta \\
\cos \theta \cos \phi & \cos \theta \sin \phi & -\sin \theta \\
-\sin \theta \sin \phi & \sin \theta \cos \phi & 0 \\
\end{matrix} \right|$
Then,
A. $\Delta $ is independent of $\theta $
B. $\Delta $ is independent of $\phi $
C. $\Delta $ is constant.
D. ${{\left. \dfrac{d\Delta }{d\theta } \right|}_{\theta =\dfrac{\pi }{2}}}=0$
Answer
591.9k+ views
Hint: Find out the value of the determinant and check if the value is a constant or free from $\theta $ or free from $\phi $. Then differentiate the result with respect to $\theta $ and check if the result of the derivative at $\theta =\dfrac{\pi }{2}$ is zero or not.
“Complete step-by-step answer:”
The determinant is given as follows:
$\Delta =\left| \begin{matrix}
\sin \theta \cos \phi & \sin \theta \sin \phi & \cos \theta \\
\cos \theta \cos \phi & \cos \theta \sin \phi & -\sin \theta \\
-\sin \theta \sin \phi & \sin \theta \cos \phi & 0 \\
\end{matrix} \right|$
Now let us first find the value of the determinant.
$\Delta =\sin \theta \cos \phi \left| \begin{matrix}
\cos \theta \sin \phi & -\sin \theta \\
\sin \theta \cos \phi & 0 \\
\end{matrix} \right|-\sin \theta \sin \phi \left| \begin{matrix}
\cos \theta \cos \phi & -\sin \theta \\
-\sin \theta \sin \phi & 0 \\
\end{matrix} \right|+\cos \theta \left| \begin{matrix}
\cos \theta \cos \phi & \cos \theta \sin \phi \\
-\sin \theta \sin \phi & \sin \theta \cos \phi \\
\end{matrix} \right|$ Now we will take the order of two determinants one by one and solve them.
At first we have,
$\left| \begin{matrix}
\cos \theta \sin \phi & -\sin \theta \\
\sin \theta \cos \phi & 0 \\
\end{matrix} \right|=(\cos \theta \sin \phi \times 0)-(-\sin \theta )\times \sin \theta \cos \phi ={{\sin }^{2}}\theta \cos \phi $
Multiplying the above determinant by $\sin \theta \cos \phi $,$\sin \theta \cos \phi \left| \begin{matrix}
\cos \theta \sin \phi & -\sin \theta \\
\sin \theta \cos \phi & 0 \\
\end{matrix} \right|={{\sin }^{2}}\theta \cos \phi \times \sin \theta \cos \phi ={{\sin }^{3}}\theta {{\cos }^{2}}\phi $
Let us take the second determinant.
$\left| \begin{matrix}
\cos \theta \cos \phi & -\sin \theta \\
-\sin \theta \sin \phi & 0 \\
\end{matrix} \right|=(\cos \theta \cos \phi \times 0)-\left( -\sin \theta \right)\times \left( -\sin \theta \sin \phi \right)=-{{\sin }^{2}}\theta \sin \phi $
Multiplying the above determinant by $-\sin \theta \sin \phi $,
$-\sin \theta \sin \phi \left| \begin{matrix}
\cos \theta \cos \phi & -\sin \theta \\
-\sin \theta \sin \phi & 0 \\
\end{matrix} \right|=(-{{\sin }^{2}}\theta \sin \phi )\times \left( -\sin \theta \sin \phi \right)={{\sin }^{3}}\theta {{\sin }^{2}}\phi $
And the third determinant,
$\left| \begin{matrix}
\cos \theta \cos \phi & \cos \theta \sin \phi \\
-\sin \theta \sin \phi & \sin \theta \cos \phi \\
\end{matrix} \right|=\cos \theta \sin \theta {{\cos }^{2}}\phi +\cos \theta \sin \theta {{\sin }^{2}}\phi =\sin \theta \cos \theta $, taking $\sin \theta \cos \theta $ common from both the terms and putting ${{\sin }^{2}}\phi +{{\cos }^{2}}\phi =1$ .
Multiplying the above determinant by $\cos \theta $,
$\cos \theta \left| \begin{matrix}
\cos \theta \cos \phi & \cos \theta \sin \phi \\
-\sin \theta \sin \phi & \sin \theta \cos \phi \\
\end{matrix} \right|=\sin \theta \cos \theta \times \cos \theta =\sin \theta {{\cos }^{2}}\theta $
By adding all the values we will get,
$\Delta ={{\sin }^{3}}\theta {{\cos }^{2}}\phi +{{\sin }^{3}}\theta {{\sin }^{2}}\phi +\sin \theta {{\cos }^{2}}\theta $
Take ${{\sin }^{3}}\theta $ common from the first two terms,
$\Rightarrow \Delta ={{\sin }^{3}}\theta ({{\cos }^{2}}\phi +{{\sin }^{2}}\phi )+\sin \theta {{\cos }^{2}}\theta $
Put, ${{\sin }^{2}}\phi +{{\cos }^{2}}\phi =1$
$\Rightarrow \Delta ={{\sin }^{3}}\theta +\sin \theta {{\cos }^{2}}\theta $
Take $\sin \theta $ common from both the terms,
$\Rightarrow \Delta =\sin \theta \left( {{\sin }^{2}}\theta +{{\cos }^{2}}\theta \right)=\sin \theta $
Hence the value of the determinant is $\sin \theta $.
Therefore the value is not a constant term. So option (c) is not correct.
It is free from $\phi $, that means the value of the determinant is independent of $\phi $.
Therefore, option (b) is correct.
The value of the determinant is $\sin \theta $. Therefore the value of the determinant is dependent on $\theta $.
Hence, option (a) is not correct.
Now to check option (d) let us differentiate the result with respect to $\theta $,
$\dfrac{d\Delta }{d\theta }=\dfrac{d}{d\theta }\left( \sin \theta \right)=\cos \theta $
${{\left. \dfrac{d\Delta }{d\theta } \right|}_{\theta =\dfrac{\pi }{2}}}=\cos \left( \dfrac{\pi }{2} \right)=0$
Hence, option (d) is correct.
Therefore, option (b) and option (d) are correct.
Note: Find the value of the determinant very carefully. Take the negative and positive sign correctly while breaking the determinant.Use Trigonometric identities and formulas for simplification.
“Complete step-by-step answer:”
The determinant is given as follows:
$\Delta =\left| \begin{matrix}
\sin \theta \cos \phi & \sin \theta \sin \phi & \cos \theta \\
\cos \theta \cos \phi & \cos \theta \sin \phi & -\sin \theta \\
-\sin \theta \sin \phi & \sin \theta \cos \phi & 0 \\
\end{matrix} \right|$
Now let us first find the value of the determinant.
$\Delta =\sin \theta \cos \phi \left| \begin{matrix}
\cos \theta \sin \phi & -\sin \theta \\
\sin \theta \cos \phi & 0 \\
\end{matrix} \right|-\sin \theta \sin \phi \left| \begin{matrix}
\cos \theta \cos \phi & -\sin \theta \\
-\sin \theta \sin \phi & 0 \\
\end{matrix} \right|+\cos \theta \left| \begin{matrix}
\cos \theta \cos \phi & \cos \theta \sin \phi \\
-\sin \theta \sin \phi & \sin \theta \cos \phi \\
\end{matrix} \right|$ Now we will take the order of two determinants one by one and solve them.
At first we have,
$\left| \begin{matrix}
\cos \theta \sin \phi & -\sin \theta \\
\sin \theta \cos \phi & 0 \\
\end{matrix} \right|=(\cos \theta \sin \phi \times 0)-(-\sin \theta )\times \sin \theta \cos \phi ={{\sin }^{2}}\theta \cos \phi $
Multiplying the above determinant by $\sin \theta \cos \phi $,$\sin \theta \cos \phi \left| \begin{matrix}
\cos \theta \sin \phi & -\sin \theta \\
\sin \theta \cos \phi & 0 \\
\end{matrix} \right|={{\sin }^{2}}\theta \cos \phi \times \sin \theta \cos \phi ={{\sin }^{3}}\theta {{\cos }^{2}}\phi $
Let us take the second determinant.
$\left| \begin{matrix}
\cos \theta \cos \phi & -\sin \theta \\
-\sin \theta \sin \phi & 0 \\
\end{matrix} \right|=(\cos \theta \cos \phi \times 0)-\left( -\sin \theta \right)\times \left( -\sin \theta \sin \phi \right)=-{{\sin }^{2}}\theta \sin \phi $
Multiplying the above determinant by $-\sin \theta \sin \phi $,
$-\sin \theta \sin \phi \left| \begin{matrix}
\cos \theta \cos \phi & -\sin \theta \\
-\sin \theta \sin \phi & 0 \\
\end{matrix} \right|=(-{{\sin }^{2}}\theta \sin \phi )\times \left( -\sin \theta \sin \phi \right)={{\sin }^{3}}\theta {{\sin }^{2}}\phi $
And the third determinant,
$\left| \begin{matrix}
\cos \theta \cos \phi & \cos \theta \sin \phi \\
-\sin \theta \sin \phi & \sin \theta \cos \phi \\
\end{matrix} \right|=\cos \theta \sin \theta {{\cos }^{2}}\phi +\cos \theta \sin \theta {{\sin }^{2}}\phi =\sin \theta \cos \theta $, taking $\sin \theta \cos \theta $ common from both the terms and putting ${{\sin }^{2}}\phi +{{\cos }^{2}}\phi =1$ .
Multiplying the above determinant by $\cos \theta $,
$\cos \theta \left| \begin{matrix}
\cos \theta \cos \phi & \cos \theta \sin \phi \\
-\sin \theta \sin \phi & \sin \theta \cos \phi \\
\end{matrix} \right|=\sin \theta \cos \theta \times \cos \theta =\sin \theta {{\cos }^{2}}\theta $
By adding all the values we will get,
$\Delta ={{\sin }^{3}}\theta {{\cos }^{2}}\phi +{{\sin }^{3}}\theta {{\sin }^{2}}\phi +\sin \theta {{\cos }^{2}}\theta $
Take ${{\sin }^{3}}\theta $ common from the first two terms,
$\Rightarrow \Delta ={{\sin }^{3}}\theta ({{\cos }^{2}}\phi +{{\sin }^{2}}\phi )+\sin \theta {{\cos }^{2}}\theta $
Put, ${{\sin }^{2}}\phi +{{\cos }^{2}}\phi =1$
$\Rightarrow \Delta ={{\sin }^{3}}\theta +\sin \theta {{\cos }^{2}}\theta $
Take $\sin \theta $ common from both the terms,
$\Rightarrow \Delta =\sin \theta \left( {{\sin }^{2}}\theta +{{\cos }^{2}}\theta \right)=\sin \theta $
Hence the value of the determinant is $\sin \theta $.
Therefore the value is not a constant term. So option (c) is not correct.
It is free from $\phi $, that means the value of the determinant is independent of $\phi $.
Therefore, option (b) is correct.
The value of the determinant is $\sin \theta $. Therefore the value of the determinant is dependent on $\theta $.
Hence, option (a) is not correct.
Now to check option (d) let us differentiate the result with respect to $\theta $,
$\dfrac{d\Delta }{d\theta }=\dfrac{d}{d\theta }\left( \sin \theta \right)=\cos \theta $
${{\left. \dfrac{d\Delta }{d\theta } \right|}_{\theta =\dfrac{\pi }{2}}}=\cos \left( \dfrac{\pi }{2} \right)=0$
Hence, option (d) is correct.
Therefore, option (b) and option (d) are correct.
Note: Find the value of the determinant very carefully. Take the negative and positive sign correctly while breaking the determinant.Use Trigonometric identities and formulas for simplification.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

How many 5 digit telephone numbers can be constructed class 11 maths CBSE

Draw a well labelled diagram of reflex arc and explain class 11 biology CBSE

What is the difference between noise and music Can class 11 physics CBSE

Trending doubts
In what year Guru Nanak Dev ji was born A15 April 1469 class 11 social science CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

10 examples of friction in our daily life

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

