
A determinant is given as following:
$\Delta =\left| \begin{matrix}
\sin \theta \cos \phi & \sin \theta \sin \phi & \cos \theta \\
\cos \theta \cos \phi & \cos \theta \sin \phi & -\sin \theta \\
-\sin \theta \sin \phi & \sin \theta \cos \phi & 0 \\
\end{matrix} \right|$
Then,
A. $\Delta $ is independent of $\theta $
B. $\Delta $ is independent of $\phi $
C. $\Delta $ is constant.
D. ${{\left. \dfrac{d\Delta }{d\theta } \right|}_{\theta =\dfrac{\pi }{2}}}=0$
Answer
618.9k+ views
Hint: Find out the value of the determinant and check if the value is a constant or free from $\theta $ or free from $\phi $. Then differentiate the result with respect to $\theta $ and check if the result of the derivative at $\theta =\dfrac{\pi }{2}$ is zero or not.
“Complete step-by-step answer:”
The determinant is given as follows:
$\Delta =\left| \begin{matrix}
\sin \theta \cos \phi & \sin \theta \sin \phi & \cos \theta \\
\cos \theta \cos \phi & \cos \theta \sin \phi & -\sin \theta \\
-\sin \theta \sin \phi & \sin \theta \cos \phi & 0 \\
\end{matrix} \right|$
Now let us first find the value of the determinant.
$\Delta =\sin \theta \cos \phi \left| \begin{matrix}
\cos \theta \sin \phi & -\sin \theta \\
\sin \theta \cos \phi & 0 \\
\end{matrix} \right|-\sin \theta \sin \phi \left| \begin{matrix}
\cos \theta \cos \phi & -\sin \theta \\
-\sin \theta \sin \phi & 0 \\
\end{matrix} \right|+\cos \theta \left| \begin{matrix}
\cos \theta \cos \phi & \cos \theta \sin \phi \\
-\sin \theta \sin \phi & \sin \theta \cos \phi \\
\end{matrix} \right|$ Now we will take the order of two determinants one by one and solve them.
At first we have,
$\left| \begin{matrix}
\cos \theta \sin \phi & -\sin \theta \\
\sin \theta \cos \phi & 0 \\
\end{matrix} \right|=(\cos \theta \sin \phi \times 0)-(-\sin \theta )\times \sin \theta \cos \phi ={{\sin }^{2}}\theta \cos \phi $
Multiplying the above determinant by $\sin \theta \cos \phi $,$\sin \theta \cos \phi \left| \begin{matrix}
\cos \theta \sin \phi & -\sin \theta \\
\sin \theta \cos \phi & 0 \\
\end{matrix} \right|={{\sin }^{2}}\theta \cos \phi \times \sin \theta \cos \phi ={{\sin }^{3}}\theta {{\cos }^{2}}\phi $
Let us take the second determinant.
$\left| \begin{matrix}
\cos \theta \cos \phi & -\sin \theta \\
-\sin \theta \sin \phi & 0 \\
\end{matrix} \right|=(\cos \theta \cos \phi \times 0)-\left( -\sin \theta \right)\times \left( -\sin \theta \sin \phi \right)=-{{\sin }^{2}}\theta \sin \phi $
Multiplying the above determinant by $-\sin \theta \sin \phi $,
$-\sin \theta \sin \phi \left| \begin{matrix}
\cos \theta \cos \phi & -\sin \theta \\
-\sin \theta \sin \phi & 0 \\
\end{matrix} \right|=(-{{\sin }^{2}}\theta \sin \phi )\times \left( -\sin \theta \sin \phi \right)={{\sin }^{3}}\theta {{\sin }^{2}}\phi $
And the third determinant,
$\left| \begin{matrix}
\cos \theta \cos \phi & \cos \theta \sin \phi \\
-\sin \theta \sin \phi & \sin \theta \cos \phi \\
\end{matrix} \right|=\cos \theta \sin \theta {{\cos }^{2}}\phi +\cos \theta \sin \theta {{\sin }^{2}}\phi =\sin \theta \cos \theta $, taking $\sin \theta \cos \theta $ common from both the terms and putting ${{\sin }^{2}}\phi +{{\cos }^{2}}\phi =1$ .
Multiplying the above determinant by $\cos \theta $,
$\cos \theta \left| \begin{matrix}
\cos \theta \cos \phi & \cos \theta \sin \phi \\
-\sin \theta \sin \phi & \sin \theta \cos \phi \\
\end{matrix} \right|=\sin \theta \cos \theta \times \cos \theta =\sin \theta {{\cos }^{2}}\theta $
By adding all the values we will get,
$\Delta ={{\sin }^{3}}\theta {{\cos }^{2}}\phi +{{\sin }^{3}}\theta {{\sin }^{2}}\phi +\sin \theta {{\cos }^{2}}\theta $
Take ${{\sin }^{3}}\theta $ common from the first two terms,
$\Rightarrow \Delta ={{\sin }^{3}}\theta ({{\cos }^{2}}\phi +{{\sin }^{2}}\phi )+\sin \theta {{\cos }^{2}}\theta $
Put, ${{\sin }^{2}}\phi +{{\cos }^{2}}\phi =1$
$\Rightarrow \Delta ={{\sin }^{3}}\theta +\sin \theta {{\cos }^{2}}\theta $
Take $\sin \theta $ common from both the terms,
$\Rightarrow \Delta =\sin \theta \left( {{\sin }^{2}}\theta +{{\cos }^{2}}\theta \right)=\sin \theta $
Hence the value of the determinant is $\sin \theta $.
Therefore the value is not a constant term. So option (c) is not correct.
It is free from $\phi $, that means the value of the determinant is independent of $\phi $.
Therefore, option (b) is correct.
The value of the determinant is $\sin \theta $. Therefore the value of the determinant is dependent on $\theta $.
Hence, option (a) is not correct.
Now to check option (d) let us differentiate the result with respect to $\theta $,
$\dfrac{d\Delta }{d\theta }=\dfrac{d}{d\theta }\left( \sin \theta \right)=\cos \theta $
${{\left. \dfrac{d\Delta }{d\theta } \right|}_{\theta =\dfrac{\pi }{2}}}=\cos \left( \dfrac{\pi }{2} \right)=0$
Hence, option (d) is correct.
Therefore, option (b) and option (d) are correct.
Note: Find the value of the determinant very carefully. Take the negative and positive sign correctly while breaking the determinant.Use Trigonometric identities and formulas for simplification.
“Complete step-by-step answer:”
The determinant is given as follows:
$\Delta =\left| \begin{matrix}
\sin \theta \cos \phi & \sin \theta \sin \phi & \cos \theta \\
\cos \theta \cos \phi & \cos \theta \sin \phi & -\sin \theta \\
-\sin \theta \sin \phi & \sin \theta \cos \phi & 0 \\
\end{matrix} \right|$
Now let us first find the value of the determinant.
$\Delta =\sin \theta \cos \phi \left| \begin{matrix}
\cos \theta \sin \phi & -\sin \theta \\
\sin \theta \cos \phi & 0 \\
\end{matrix} \right|-\sin \theta \sin \phi \left| \begin{matrix}
\cos \theta \cos \phi & -\sin \theta \\
-\sin \theta \sin \phi & 0 \\
\end{matrix} \right|+\cos \theta \left| \begin{matrix}
\cos \theta \cos \phi & \cos \theta \sin \phi \\
-\sin \theta \sin \phi & \sin \theta \cos \phi \\
\end{matrix} \right|$ Now we will take the order of two determinants one by one and solve them.
At first we have,
$\left| \begin{matrix}
\cos \theta \sin \phi & -\sin \theta \\
\sin \theta \cos \phi & 0 \\
\end{matrix} \right|=(\cos \theta \sin \phi \times 0)-(-\sin \theta )\times \sin \theta \cos \phi ={{\sin }^{2}}\theta \cos \phi $
Multiplying the above determinant by $\sin \theta \cos \phi $,$\sin \theta \cos \phi \left| \begin{matrix}
\cos \theta \sin \phi & -\sin \theta \\
\sin \theta \cos \phi & 0 \\
\end{matrix} \right|={{\sin }^{2}}\theta \cos \phi \times \sin \theta \cos \phi ={{\sin }^{3}}\theta {{\cos }^{2}}\phi $
Let us take the second determinant.
$\left| \begin{matrix}
\cos \theta \cos \phi & -\sin \theta \\
-\sin \theta \sin \phi & 0 \\
\end{matrix} \right|=(\cos \theta \cos \phi \times 0)-\left( -\sin \theta \right)\times \left( -\sin \theta \sin \phi \right)=-{{\sin }^{2}}\theta \sin \phi $
Multiplying the above determinant by $-\sin \theta \sin \phi $,
$-\sin \theta \sin \phi \left| \begin{matrix}
\cos \theta \cos \phi & -\sin \theta \\
-\sin \theta \sin \phi & 0 \\
\end{matrix} \right|=(-{{\sin }^{2}}\theta \sin \phi )\times \left( -\sin \theta \sin \phi \right)={{\sin }^{3}}\theta {{\sin }^{2}}\phi $
And the third determinant,
$\left| \begin{matrix}
\cos \theta \cos \phi & \cos \theta \sin \phi \\
-\sin \theta \sin \phi & \sin \theta \cos \phi \\
\end{matrix} \right|=\cos \theta \sin \theta {{\cos }^{2}}\phi +\cos \theta \sin \theta {{\sin }^{2}}\phi =\sin \theta \cos \theta $, taking $\sin \theta \cos \theta $ common from both the terms and putting ${{\sin }^{2}}\phi +{{\cos }^{2}}\phi =1$ .
Multiplying the above determinant by $\cos \theta $,
$\cos \theta \left| \begin{matrix}
\cos \theta \cos \phi & \cos \theta \sin \phi \\
-\sin \theta \sin \phi & \sin \theta \cos \phi \\
\end{matrix} \right|=\sin \theta \cos \theta \times \cos \theta =\sin \theta {{\cos }^{2}}\theta $
By adding all the values we will get,
$\Delta ={{\sin }^{3}}\theta {{\cos }^{2}}\phi +{{\sin }^{3}}\theta {{\sin }^{2}}\phi +\sin \theta {{\cos }^{2}}\theta $
Take ${{\sin }^{3}}\theta $ common from the first two terms,
$\Rightarrow \Delta ={{\sin }^{3}}\theta ({{\cos }^{2}}\phi +{{\sin }^{2}}\phi )+\sin \theta {{\cos }^{2}}\theta $
Put, ${{\sin }^{2}}\phi +{{\cos }^{2}}\phi =1$
$\Rightarrow \Delta ={{\sin }^{3}}\theta +\sin \theta {{\cos }^{2}}\theta $
Take $\sin \theta $ common from both the terms,
$\Rightarrow \Delta =\sin \theta \left( {{\sin }^{2}}\theta +{{\cos }^{2}}\theta \right)=\sin \theta $
Hence the value of the determinant is $\sin \theta $.
Therefore the value is not a constant term. So option (c) is not correct.
It is free from $\phi $, that means the value of the determinant is independent of $\phi $.
Therefore, option (b) is correct.
The value of the determinant is $\sin \theta $. Therefore the value of the determinant is dependent on $\theta $.
Hence, option (a) is not correct.
Now to check option (d) let us differentiate the result with respect to $\theta $,
$\dfrac{d\Delta }{d\theta }=\dfrac{d}{d\theta }\left( \sin \theta \right)=\cos \theta $
${{\left. \dfrac{d\Delta }{d\theta } \right|}_{\theta =\dfrac{\pi }{2}}}=\cos \left( \dfrac{\pi }{2} \right)=0$
Hence, option (d) is correct.
Therefore, option (b) and option (d) are correct.
Note: Find the value of the determinant very carefully. Take the negative and positive sign correctly while breaking the determinant.Use Trigonometric identities and formulas for simplification.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

