
A data consists of n observations: \[{{x}_{1}},{{x}_{2}},....,{{x}_{n}}\]. If \[\sum\limits_{i=1}^{n}{{{\left( {{x}_{i}}+1 \right)}^{2}}}=9n\] and \[\sum\limits_{i=1}^{n}{{{\left( {{x}_{i}}-1 \right)}^{2}}}=5n\], then the standard deviation of this data is: -
(a) 5
(b) \[\sqrt{5}\]
(c) \[\sqrt{7}\]
(d) 2
Answer
576.3k+ views
Hint: Apply the identity: - \[{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab\] to break the terms of \[{{\left( {{x}_{i}}+1 \right)}^{2}}\] and assume the summation of this as equation (i). Now, apply the identity, \[{{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab\] to break the terms of \[{{\left( {{x}_{i}}-1 \right)}^{2}}\] and assume the summation of this as equation (ii). Subtract equation (ii) from equation (i) and find the value of \[\overline{x}\], which is the mean of the given ‘n’ observation. Now, apply the formula: - \[\sigma =\sqrt{\dfrac{\sum\limits_{i=1}^{n}{{{\left( {{x}_{i}}-\overline{x} \right)}^{2}}}}{n}}\], where ‘\[\sigma \]’ is the standard deviation, to find the value of standard deviation.
Complete step-by-step solution:
We have been provided with two relations: - \[\sum\limits_{i=1}^{n}{{{\left( {{x}_{i}}+1 \right)}^{2}}}=9n\] and \[\sum\limits_{i=1}^{n}{{{\left( {{x}_{i}}-1 \right)}^{2}}}=5n\]. We have to find standard deviation.
Consider the first relation: -
\[\Rightarrow \] \[\sum\limits_{i=1}^{n}{{{\left( {{x}_{i}}+1 \right)}^{2}}}=9n\]
Applying the identity: - \[{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab\], we get,
\[\Rightarrow \sum\limits_{i=1}^{n}{x_{i}^{2}+{{1}^{2}}+2{{x}_{i}}}=9n\]
\[\Rightarrow \sum\limits_{i=1}^{n}{\left( x_{i}^{2}+1+2{{x}_{i}} \right)}=9n\] - (i)
Now, let us consider the second relation: -
\[\Rightarrow \sum\limits_{i=1}^{n}{{{\left( {{x}_{i}}-1 \right)}^{2}}}=5n\]
Applying the identity: - \[{{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab\], we get,
\[\Rightarrow \sum\limits_{i=1}^{n}{\left( x_{i}^{2}+{{1}^{2}}-2{{x}_{i}} \right)}=5n\]
\[\Rightarrow \sum\limits_{i=1}^{n}{\left( x_{i}^{2}+{{1}^{2}}-2{{x}_{i}} \right)}=5n\] - (ii)
Substituting equation (i) and (ii), we get,
\[\begin{align}
& \Rightarrow \sum\limits_{i=1}^{n}{\left( x_{i}^{2}+1+2{{x}_{i}} \right)}-\sum\limits_{i=1}^{n}{\left( x_{i}^{2}+1-2{{x}_{i}} \right)}=9n-5n \\
& \Rightarrow \sum\limits_{i=1}^{n}{\left[ \left( x_{i}^{2}+1+2{{x}_{i}} \right)-\left( x_{i}^{2}+1-2{{x}_{i}} \right) \right]}=9n-5 \\
& \Rightarrow \sum\limits_{i=1}^{n}{\left[ \left( x_{i}^{2}+1+2{{x}_{i}}-x_{i}^{2}-1+2{{x}_{i}} \right) \right]=4n} \\
\end{align}\]
Cancelling the like terms, we get,
\[\begin{align}
& \Rightarrow \sum\limits_{i=1}^{n}{4{{x}_{i}}}=4n \\
& \Rightarrow 4\sum\limits_{i=1}^{n}{{{x}_{i}}}=4n \\
& \Rightarrow \sum\limits_{i=1}^{n}{{{x}_{i}}}=n \\
& \Rightarrow \dfrac{\sum\limits_{i=1}^{n}{{{x}_{i}}}}{n}=1 \\
\end{align}\]
Since, mean of ‘n’ observation is \[\overline{x}=\sum\limits_{i=1}^{n}{\dfrac{{{x}_{i}}}{n}}\]. Therefore, the above relation becomes: -
\[\Rightarrow \overline{x}=1\] - (iii)
We know that standard deviation of ‘n’ observations are given by: - \[\sigma =\sqrt{\dfrac{\sum\limits_{i=1}^{n}{{{\left( {{x}_{i}}-\overline{x} \right)}^{2}}}}{n}}\], where ‘\[\sigma \]’ is the standard deviation.
\[\Rightarrow \sigma =\sqrt{\dfrac{\sum\limits_{i=1}^{n}{{{\left( {{x}_{i}}-\overline{x} \right)}^{2}}}}{n}}\]
Now, substituting \[\overline{x}=1\], from equation (iii), we get,
\[\Rightarrow \sigma =\sqrt{\dfrac{\sum\limits_{i=1}^{n}{{{\left( {{x}_{i}}-\overline{x} \right)}^{2}}}}{n}}\]
Substituting the value of \[\sum\limits_{i=1}^{n}{{{\left( {{x}_{i}}-1 \right)}^{2}}}\] from equation (ii), we get,
\[\begin{align}
& \Rightarrow \sigma =\sqrt{\dfrac{5n}{n}} \\
& \Rightarrow \sigma =\sqrt{5} \\
\end{align}\]
Hence, option (b) is the correct answer.
Note: One may note that we have subtracted equation (ii) from equation (i). This is because we had to find the mean of the ‘n’ observations. If we add the two equations then the term \[{{x}_{i}}\] will get canceled and the term \[x_{i}^{2}\] will be left. But we need the term \[{{x}_{i}}\] for mean value. So, the addition was not preferred. This value of mean was necessary for the calculation of standard deviation.
Complete step-by-step solution:
We have been provided with two relations: - \[\sum\limits_{i=1}^{n}{{{\left( {{x}_{i}}+1 \right)}^{2}}}=9n\] and \[\sum\limits_{i=1}^{n}{{{\left( {{x}_{i}}-1 \right)}^{2}}}=5n\]. We have to find standard deviation.
Consider the first relation: -
\[\Rightarrow \] \[\sum\limits_{i=1}^{n}{{{\left( {{x}_{i}}+1 \right)}^{2}}}=9n\]
Applying the identity: - \[{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab\], we get,
\[\Rightarrow \sum\limits_{i=1}^{n}{x_{i}^{2}+{{1}^{2}}+2{{x}_{i}}}=9n\]
\[\Rightarrow \sum\limits_{i=1}^{n}{\left( x_{i}^{2}+1+2{{x}_{i}} \right)}=9n\] - (i)
Now, let us consider the second relation: -
\[\Rightarrow \sum\limits_{i=1}^{n}{{{\left( {{x}_{i}}-1 \right)}^{2}}}=5n\]
Applying the identity: - \[{{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab\], we get,
\[\Rightarrow \sum\limits_{i=1}^{n}{\left( x_{i}^{2}+{{1}^{2}}-2{{x}_{i}} \right)}=5n\]
\[\Rightarrow \sum\limits_{i=1}^{n}{\left( x_{i}^{2}+{{1}^{2}}-2{{x}_{i}} \right)}=5n\] - (ii)
Substituting equation (i) and (ii), we get,
\[\begin{align}
& \Rightarrow \sum\limits_{i=1}^{n}{\left( x_{i}^{2}+1+2{{x}_{i}} \right)}-\sum\limits_{i=1}^{n}{\left( x_{i}^{2}+1-2{{x}_{i}} \right)}=9n-5n \\
& \Rightarrow \sum\limits_{i=1}^{n}{\left[ \left( x_{i}^{2}+1+2{{x}_{i}} \right)-\left( x_{i}^{2}+1-2{{x}_{i}} \right) \right]}=9n-5 \\
& \Rightarrow \sum\limits_{i=1}^{n}{\left[ \left( x_{i}^{2}+1+2{{x}_{i}}-x_{i}^{2}-1+2{{x}_{i}} \right) \right]=4n} \\
\end{align}\]
Cancelling the like terms, we get,
\[\begin{align}
& \Rightarrow \sum\limits_{i=1}^{n}{4{{x}_{i}}}=4n \\
& \Rightarrow 4\sum\limits_{i=1}^{n}{{{x}_{i}}}=4n \\
& \Rightarrow \sum\limits_{i=1}^{n}{{{x}_{i}}}=n \\
& \Rightarrow \dfrac{\sum\limits_{i=1}^{n}{{{x}_{i}}}}{n}=1 \\
\end{align}\]
Since, mean of ‘n’ observation is \[\overline{x}=\sum\limits_{i=1}^{n}{\dfrac{{{x}_{i}}}{n}}\]. Therefore, the above relation becomes: -
\[\Rightarrow \overline{x}=1\] - (iii)
We know that standard deviation of ‘n’ observations are given by: - \[\sigma =\sqrt{\dfrac{\sum\limits_{i=1}^{n}{{{\left( {{x}_{i}}-\overline{x} \right)}^{2}}}}{n}}\], where ‘\[\sigma \]’ is the standard deviation.
\[\Rightarrow \sigma =\sqrt{\dfrac{\sum\limits_{i=1}^{n}{{{\left( {{x}_{i}}-\overline{x} \right)}^{2}}}}{n}}\]
Now, substituting \[\overline{x}=1\], from equation (iii), we get,
\[\Rightarrow \sigma =\sqrt{\dfrac{\sum\limits_{i=1}^{n}{{{\left( {{x}_{i}}-\overline{x} \right)}^{2}}}}{n}}\]
Substituting the value of \[\sum\limits_{i=1}^{n}{{{\left( {{x}_{i}}-1 \right)}^{2}}}\] from equation (ii), we get,
\[\begin{align}
& \Rightarrow \sigma =\sqrt{\dfrac{5n}{n}} \\
& \Rightarrow \sigma =\sqrt{5} \\
\end{align}\]
Hence, option (b) is the correct answer.
Note: One may note that we have subtracted equation (ii) from equation (i). This is because we had to find the mean of the ‘n’ observations. If we add the two equations then the term \[{{x}_{i}}\] will get canceled and the term \[x_{i}^{2}\] will be left. But we need the term \[{{x}_{i}}\] for mean value. So, the addition was not preferred. This value of mean was necessary for the calculation of standard deviation.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

