
A cubical block of side 10cm is surmounted by a hemisphere. What is the largest diameter that hemisphere can have? Find the cost of painting the total surface area of the solid so formed, at the rate of rupees 5 per sq. cm. [use $\pi = \dfrac{{22}}{7}$]
Answer
518.5k+ views
Hint: To solve this question, at first we will obtain the surface area of the cubical block and the curved surface area of the hemisphere and thus will obtain the total surface area. Then by multiplying the rate of the painting per sq. cm. with the total surface area we will get the cost of painting.
Complete step-by-step answer:
A cubical block of side 10cm is surmounted by a hemisphere.
Representing the above statement in a diagram as follows:
Here, the red portion represents the cube and the pink one represents the hemisphere.
The side of the cube is a = 10 cm.
Hence the largest possible diameter of the hemisphere can be d = 10 cm.
Hence, radius of the hemisphere is $r = \dfrac{d}{2} = \dfrac{{10}}{2} = 5cm$ ………(1)
We need to paint the solid we got above. To paint that, we need to paint the whole cube and curved surface area of the hemisphere except the base of the hemisphere.
Now, we will find the surface area of cube by using the formula:
Surface area of a cube is given by $6{a^2}$, where a is the length of side of the cube.
Hence, surface area of this cube is $6{a^2} = 6 \times {\left( {10} \right)^2} = 600c{m^2}$. ………….(2)
The curved surface area of the hemisphere is given by $2\pi {r^2}$, where r is the radius of the hemisphere.
So, the CSA of the given hemisphere will be $2\pi {r^2} = 2\pi \times {5^2}$ (Using 1)
Now, putting in the value of $\pi $, we will get:-
CSA of hemisphere = $2\pi \times {5^2} = 2 \times \dfrac{{22}}{7} \times 25$
On simplifying it, we will get:
CSA of hemisphere = $2\pi \times {5^2} = 2 \times \dfrac{{22}}{7} \times 25$
CSA of hemisphere =$\dfrac{{1110}}{7}c{m^2}$ ………….(3)
Area of the base of the hemisphere will be given by $\pi {r^2}$, where r is the radius of the hemisphere. (Because base is circle only)
Now, putting in the values, we will get:
Area of base = $\pi {r^2} = \dfrac{{22}}{7}{\left( 5 \right)^2} = \dfrac{{22}}{7} \times 25$
On simplifying it, we will get:
Area of base = $\dfrac{{555}}{7}c{m^2}$ ………………(4)
Hence, total surface area to be painted = surface area of the cube + curved surface area of the hemisphere – area of the base of the hemisphere
Now, using (2), (3) and (4), we will get:-
The total surface area to be painted $ = 600 + \dfrac{{1100}}{7} - \dfrac{{550}}{7} = 600 + \dfrac{{550}}{7}$
On simplifying it by taking LCM in RHS, we will get:-
The total surface area to be painted $ = \dfrac{{4200 + 550}}{7}$
On simplifying it further, we will get:-
The total surface area to be painted $ = \dfrac{{4750}}{7}c{m^2}$
We know that the cost of painting per square cm is Rs.5.
Hence the cost of painting 678.57 sq. cm $ = 678.57 \times 5 = 3392.85$rupees
Therefore the cost of painting the total surface area of the solid is Rs.3392.85.
Note: We subtract the area of the base of the hemisphere because that much part of the cube is covered by the base of the hemisphere and we would never be able to paint it.
A cube is a three dimensional solid object bounded by six square faces. It has 6 faces, 12 edges and 8 vertices.
The surface area of the cube is $6{a^2}$. Where a is the side of the cube.
A hemisphere is three dimensional solid which is exactly half of the sphere.
The surface area of the hemisphere is the sum of the curved surface area and surface area of its base i.e. $2\pi {r^2} + \pi {r^2} = 3\pi {r^2}$. Where r is the radius of the hemisphere.
Complete step-by-step answer:
A cubical block of side 10cm is surmounted by a hemisphere.
Representing the above statement in a diagram as follows:
Here, the red portion represents the cube and the pink one represents the hemisphere.
The side of the cube is a = 10 cm.
Hence the largest possible diameter of the hemisphere can be d = 10 cm.
Hence, radius of the hemisphere is $r = \dfrac{d}{2} = \dfrac{{10}}{2} = 5cm$ ………(1)
We need to paint the solid we got above. To paint that, we need to paint the whole cube and curved surface area of the hemisphere except the base of the hemisphere.
Now, we will find the surface area of cube by using the formula:
Surface area of a cube is given by $6{a^2}$, where a is the length of side of the cube.
Hence, surface area of this cube is $6{a^2} = 6 \times {\left( {10} \right)^2} = 600c{m^2}$. ………….(2)
The curved surface area of the hemisphere is given by $2\pi {r^2}$, where r is the radius of the hemisphere.
So, the CSA of the given hemisphere will be $2\pi {r^2} = 2\pi \times {5^2}$ (Using 1)
Now, putting in the value of $\pi $, we will get:-
CSA of hemisphere = $2\pi \times {5^2} = 2 \times \dfrac{{22}}{7} \times 25$
On simplifying it, we will get:
CSA of hemisphere = $2\pi \times {5^2} = 2 \times \dfrac{{22}}{7} \times 25$
CSA of hemisphere =$\dfrac{{1110}}{7}c{m^2}$ ………….(3)
Area of the base of the hemisphere will be given by $\pi {r^2}$, where r is the radius of the hemisphere. (Because base is circle only)
Now, putting in the values, we will get:
Area of base = $\pi {r^2} = \dfrac{{22}}{7}{\left( 5 \right)^2} = \dfrac{{22}}{7} \times 25$
On simplifying it, we will get:
Area of base = $\dfrac{{555}}{7}c{m^2}$ ………………(4)
Hence, total surface area to be painted = surface area of the cube + curved surface area of the hemisphere – area of the base of the hemisphere
Now, using (2), (3) and (4), we will get:-
The total surface area to be painted $ = 600 + \dfrac{{1100}}{7} - \dfrac{{550}}{7} = 600 + \dfrac{{550}}{7}$
On simplifying it by taking LCM in RHS, we will get:-
The total surface area to be painted $ = \dfrac{{4200 + 550}}{7}$
On simplifying it further, we will get:-
The total surface area to be painted $ = \dfrac{{4750}}{7}c{m^2}$
We know that the cost of painting per square cm is Rs.5.
Hence the cost of painting 678.57 sq. cm $ = 678.57 \times 5 = 3392.85$rupees
Therefore the cost of painting the total surface area of the solid is Rs.3392.85.
Note: We subtract the area of the base of the hemisphere because that much part of the cube is covered by the base of the hemisphere and we would never be able to paint it.
A cube is a three dimensional solid object bounded by six square faces. It has 6 faces, 12 edges and 8 vertices.
The surface area of the cube is $6{a^2}$. Where a is the side of the cube.
A hemisphere is three dimensional solid which is exactly half of the sphere.
The surface area of the hemisphere is the sum of the curved surface area and surface area of its base i.e. $2\pi {r^2} + \pi {r^2} = 3\pi {r^2}$. Where r is the radius of the hemisphere.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
The shortest day of the year in India

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

