
A copper wire when bent in the form of a square, encloses an area of \[484c{m^2}\]. If the same wire is bent in the form of a circle, find the area enclosed by it.
Answer
562.5k+ views
Hint:
The hack in this question is to understand that when the same wire is bent to circle from square shape then perimeter won’t change. We’ll use the formula of area of square to find it’s side. Then with the side we can find the perimeter of the circle then area.
Perimeter of square = perimeter of circle.
Complete step by step solution:
We have to find the area enclosed by the circle. For that dimension of circle like radius or diameter is needed.
A copper wire is bent in the form of a square and the same copper wire is bent to form the circle also.
So the perimeter in each case should be the same.
Perimeter of square = perimeter of circle.
But we do not have a side of square or any dimension of circle also.
Let’s find it.
Given a square encloses an area of \[484c{m^2}\].
Area of square \[ = side \times side\]
\[ \Rightarrow 484 = side \times side\]
Taking square root on both sides,
\[ \Rightarrow 22 = side\]
This side of the square is 22cm.
Now,
Perimeter of square = perimeter of circle.
\[
\Rightarrow 4 \times side = 2\pi r \\
\Rightarrow 4 \times 22 = 2 \times \dfrac{{22}}{7} \times r \\
\Rightarrow r = 14cm \\
\]
We found the radius of circle r=14cm.
Now find the area enclosed,
Area enclosed by copper wire bent in circle,
\[
\Rightarrow \pi {r^2} \\
\Rightarrow \dfrac{{22}}{7} \times 14 \times 14 \\
\Rightarrow 22 \times 28 \\
\Rightarrow 616c{m^2} \\
\]
So, the area enclosed is \[616c{m^2}\].
Note:
1) Areas of the shapes cannot be equated directly because they are not the same.
2) Perimeters are equated because the same wire is used in both cases.
The hack in this question is to understand that when the same wire is bent to circle from square shape then perimeter won’t change. We’ll use the formula of area of square to find it’s side. Then with the side we can find the perimeter of the circle then area.
Perimeter of square = perimeter of circle.
Complete step by step solution:
We have to find the area enclosed by the circle. For that dimension of circle like radius or diameter is needed.
A copper wire is bent in the form of a square and the same copper wire is bent to form the circle also.
So the perimeter in each case should be the same.
Perimeter of square = perimeter of circle.
But we do not have a side of square or any dimension of circle also.
Let’s find it.
Given a square encloses an area of \[484c{m^2}\].
Area of square \[ = side \times side\]
\[ \Rightarrow 484 = side \times side\]
Taking square root on both sides,
\[ \Rightarrow 22 = side\]
This side of the square is 22cm.
Now,
Perimeter of square = perimeter of circle.
\[
\Rightarrow 4 \times side = 2\pi r \\
\Rightarrow 4 \times 22 = 2 \times \dfrac{{22}}{7} \times r \\
\Rightarrow r = 14cm \\
\]
We found the radius of circle r=14cm.
Now find the area enclosed,
Area enclosed by copper wire bent in circle,
\[
\Rightarrow \pi {r^2} \\
\Rightarrow \dfrac{{22}}{7} \times 14 \times 14 \\
\Rightarrow 22 \times 28 \\
\Rightarrow 616c{m^2} \\
\]
So, the area enclosed is \[616c{m^2}\].
Note:
1) Areas of the shapes cannot be equated directly because they are not the same.
2) Perimeters are equated because the same wire is used in both cases.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

