
A copper wire is held at the two ends by rigid supports. At \[60^\circ {\rm{C}}\], the wire is just taut with negligible tension. The speed of transverse waves in this wire at \[10^\circ {\rm{C}}\] is \[10x{\rm{ m}}{{\rm{s}}^{ - 1}}\]. Then the value of 'x' is. ( Take Young's modulus, \[{Y_{Cu}} = 1.6 \times {10^{11}}{\rm{ Pa}}\], coefficient of linear expansion, \[{\alpha _{Cu}} = 1.8 \times {10^{ - 6}}{\rm{ }}^\circ {{\rm{C}}^{ - 1}}\] and density, \[{\rho _{Cu}} = 9000{\rm{ kg }}{{\rm{m}}^{ - 3}}\])
(1) \[4{\rm{ }}{{\rm{m}} {\left/
{\vphantom {{\rm{m}} {\rm{s}}}} \right.
} {\rm{s}}}\]
(2)\[3{\rm{ }}{{\rm{m}} {\left/
{\vphantom {{\rm{m}} {\rm{s}}}} \right.
} {\rm{s}}}\]
(3) \[14{\rm{ }}{{\rm{m}} {\left/
{\vphantom {{\rm{m}} {\rm{s}}}} \right.
} {\rm{s}}}\]
(4) \[2{\rm{ }}{{\rm{m}} {\left/
{\vphantom {{\rm{m}} {\rm{s}}}} \right.
} {\rm{s}}}\]
Answer
579k+ views
Hint:We will utilize the concept of thermal expansion or compression of given copper wire. The expression for force developed in the wire provides us with the relationship between Young's modulus, cross-sectional area, thermal expansion coefficient, and change in the wire temperature.
Complete step by step answer:
Given:
The temperature at which wire is taut with negligible tension is \[{T_2} = 60^\circ {\rm{C}}\].
The speed of transverse waves in the given wire is \[V = 10x{\rm{ m}}{{\rm{s}}^{ - 1}}\].
The temperature at the speed of transverse waves v is \[{T_1} = 60^\circ {\rm{C}}\].
The value of Young's modulus of copper wire is \[{Y_{Cu}} = 1.6 \times {10^{11}}{\rm{ Pa}}\].
The coefficient of linear expansion of copper wire is \[{\alpha _{Cu}} = 1.8 \times {10^{ - 6}}{\rm{ }}^\circ {{\rm{C}}^{ - 1}}\].
The density of copper wire is \[{\rho _{Cu}} = 9000{\rm{ kg }}{{\rm{m}}^{ - 3}}\].
We have to evaluate the value of 'x'
Let us write the expression for the change in copper wire length when its temperature changed from \[{T_2}\] to \[{T_1}\].
\[\Delta l = l{\alpha _{Cu}}\Delta T\]
Here l is the length of the given wire and \[\Delta T\] is the temperature change.
We know that the expression for force of thermal expansion or compression of the given copper wire can be written as:
\[F = YA{\alpha _{Cu}}\Delta T\]
Here A is the cross-sectional area of the wire.
Let us write the expression for the speed of transverse of the given copper wire.
\[V = \sqrt {\dfrac{F}{{A\rho }}} \]
Substitute \[YA\alpha \Delta T\] for F in the above expression.
\[\begin{array}{l}
V = \sqrt {\dfrac{{{Y_{Cu}}A{\alpha _{Cu}}\Delta T}}{{A\rho }}} \\
= \sqrt {\dfrac{{{Y_{Cu}}{\alpha _{Cu}}\left( {{T_2} - {T_1}} \right)}}{\rho }}
\end{array}\]
Substitute \[10x{\rm{ m}}{{\rm{s}}^{ - 1}}\] for V, \[1.8 \times {10^{ - 6}}{\rm{ }}^\circ {{\rm{C}}^{ - 1}}\] for \[{\alpha _{Cu}}\], \[1.6 \times {10^{11}}{\rm{ Pa}}\] for \[{Y_{Cu}}\], \[60^\circ {\rm{C}}\] for \[{T_2}\], and \[10^\circ {\rm{C}}\] for \[{T_1}\] and \[9000{\rm{ kg }}{{\rm{m}}^{ - 3}}\] for \[{\rho _{Cu}}\] in the above expression.
\[\begin{array}{l}
\Rightarrow 10x{\rm{ m}}{{\rm{s}}^{ - 1}} = \sqrt {\dfrac{{\left( {1.6 \times {{10}^{11}}{\rm{ Pa}}} \right)\left( {1.8 \times {{10}^{ - 6}}{\rm{ }}^\circ {{\rm{C}}^{ - 1}}} \right)\left( {60^\circ {\rm{C}} - 10^\circ {\rm{C}}} \right)}}{{9000{\rm{ kg }}{{\rm{m}}^{ - 3}}}}} \\
\Rightarrow 10x{\rm{ m}}{{\rm{s}}^{ - 1}} = \sqrt {\dfrac{{\left( {1.6 \times {{10}^{11}}{\rm{ Pa}} \times \dfrac{{{{\rm{N}} {\left/
{\vphantom {{\rm{N}} {{{\rm{m}}^2}}}} \right.
} {{{\rm{m}}^2}}}}}{{{\rm{Pa}}}} \times \dfrac{{{{{\rm{kg}} \cdot {\rm{m}}} {\left/
{\vphantom {{{\rm{kg}} \cdot {\rm{m}}} {{{\rm{s}}^2}}}} \right.
} {{{\rm{s}}^2}}}}}{{\rm{N}}}} \right)\left( {1.8 \times {{10}^{ - 6}}{\rm{ }}^\circ {{\rm{C}}^{ - 1}}} \right)\left( {60^\circ {\rm{C}} - 10^\circ {\rm{C}}} \right)}}{{9000{\rm{ kg }}{{\rm{m}}^{ - 3}}}}} \\
\Rightarrow 10x{\rm{ m}}{{\rm{s}}^{ - 1}} = \sqrt {1600{\rm{ }}{{\rm{m}}^2}{{\rm{s}}^{ - 2}}} \\
\Rightarrow 10x{\rm{ m}}{{\rm{s}}^{ - 1}} = 40{\rm{m}}{{\rm{s}}^{ - 1}}
\end{array}\]
From the above expression, we get:
\[x = 4\]
Therefore, we can say that the value of x is 4, and option (1) is correct.
Note:We can remember Pascal's conversion to Newton-meter and converting Newton into its base units (kilogram, meter, and second). We also have to be extra careful while rearranging the final expression.
Complete step by step answer:
Given:
The temperature at which wire is taut with negligible tension is \[{T_2} = 60^\circ {\rm{C}}\].
The speed of transverse waves in the given wire is \[V = 10x{\rm{ m}}{{\rm{s}}^{ - 1}}\].
The temperature at the speed of transverse waves v is \[{T_1} = 60^\circ {\rm{C}}\].
The value of Young's modulus of copper wire is \[{Y_{Cu}} = 1.6 \times {10^{11}}{\rm{ Pa}}\].
The coefficient of linear expansion of copper wire is \[{\alpha _{Cu}} = 1.8 \times {10^{ - 6}}{\rm{ }}^\circ {{\rm{C}}^{ - 1}}\].
The density of copper wire is \[{\rho _{Cu}} = 9000{\rm{ kg }}{{\rm{m}}^{ - 3}}\].
We have to evaluate the value of 'x'
Let us write the expression for the change in copper wire length when its temperature changed from \[{T_2}\] to \[{T_1}\].
\[\Delta l = l{\alpha _{Cu}}\Delta T\]
Here l is the length of the given wire and \[\Delta T\] is the temperature change.
We know that the expression for force of thermal expansion or compression of the given copper wire can be written as:
\[F = YA{\alpha _{Cu}}\Delta T\]
Here A is the cross-sectional area of the wire.
Let us write the expression for the speed of transverse of the given copper wire.
\[V = \sqrt {\dfrac{F}{{A\rho }}} \]
Substitute \[YA\alpha \Delta T\] for F in the above expression.
\[\begin{array}{l}
V = \sqrt {\dfrac{{{Y_{Cu}}A{\alpha _{Cu}}\Delta T}}{{A\rho }}} \\
= \sqrt {\dfrac{{{Y_{Cu}}{\alpha _{Cu}}\left( {{T_2} - {T_1}} \right)}}{\rho }}
\end{array}\]
Substitute \[10x{\rm{ m}}{{\rm{s}}^{ - 1}}\] for V, \[1.8 \times {10^{ - 6}}{\rm{ }}^\circ {{\rm{C}}^{ - 1}}\] for \[{\alpha _{Cu}}\], \[1.6 \times {10^{11}}{\rm{ Pa}}\] for \[{Y_{Cu}}\], \[60^\circ {\rm{C}}\] for \[{T_2}\], and \[10^\circ {\rm{C}}\] for \[{T_1}\] and \[9000{\rm{ kg }}{{\rm{m}}^{ - 3}}\] for \[{\rho _{Cu}}\] in the above expression.
\[\begin{array}{l}
\Rightarrow 10x{\rm{ m}}{{\rm{s}}^{ - 1}} = \sqrt {\dfrac{{\left( {1.6 \times {{10}^{11}}{\rm{ Pa}}} \right)\left( {1.8 \times {{10}^{ - 6}}{\rm{ }}^\circ {{\rm{C}}^{ - 1}}} \right)\left( {60^\circ {\rm{C}} - 10^\circ {\rm{C}}} \right)}}{{9000{\rm{ kg }}{{\rm{m}}^{ - 3}}}}} \\
\Rightarrow 10x{\rm{ m}}{{\rm{s}}^{ - 1}} = \sqrt {\dfrac{{\left( {1.6 \times {{10}^{11}}{\rm{ Pa}} \times \dfrac{{{{\rm{N}} {\left/
{\vphantom {{\rm{N}} {{{\rm{m}}^2}}}} \right.
} {{{\rm{m}}^2}}}}}{{{\rm{Pa}}}} \times \dfrac{{{{{\rm{kg}} \cdot {\rm{m}}} {\left/
{\vphantom {{{\rm{kg}} \cdot {\rm{m}}} {{{\rm{s}}^2}}}} \right.
} {{{\rm{s}}^2}}}}}{{\rm{N}}}} \right)\left( {1.8 \times {{10}^{ - 6}}{\rm{ }}^\circ {{\rm{C}}^{ - 1}}} \right)\left( {60^\circ {\rm{C}} - 10^\circ {\rm{C}}} \right)}}{{9000{\rm{ kg }}{{\rm{m}}^{ - 3}}}}} \\
\Rightarrow 10x{\rm{ m}}{{\rm{s}}^{ - 1}} = \sqrt {1600{\rm{ }}{{\rm{m}}^2}{{\rm{s}}^{ - 2}}} \\
\Rightarrow 10x{\rm{ m}}{{\rm{s}}^{ - 1}} = 40{\rm{m}}{{\rm{s}}^{ - 1}}
\end{array}\]
From the above expression, we get:
\[x = 4\]
Therefore, we can say that the value of x is 4, and option (1) is correct.
Note:We can remember Pascal's conversion to Newton-meter and converting Newton into its base units (kilogram, meter, and second). We also have to be extra careful while rearranging the final expression.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

