
A copper wire is held at the two ends by rigid supports. At \[60^\circ {\rm{C}}\], the wire is just taut with negligible tension. The speed of transverse waves in this wire at \[10^\circ {\rm{C}}\] is \[10x{\rm{ m}}{{\rm{s}}^{ - 1}}\]. Then the value of 'x' is. ( Take Young's modulus, \[{Y_{Cu}} = 1.6 \times {10^{11}}{\rm{ Pa}}\], coefficient of linear expansion, \[{\alpha _{Cu}} = 1.8 \times {10^{ - 6}}{\rm{ }}^\circ {{\rm{C}}^{ - 1}}\] and density, \[{\rho _{Cu}} = 9000{\rm{ kg }}{{\rm{m}}^{ - 3}}\])
(1) \[4{\rm{ }}{{\rm{m}} {\left/
{\vphantom {{\rm{m}} {\rm{s}}}} \right.
} {\rm{s}}}\]
(2)\[3{\rm{ }}{{\rm{m}} {\left/
{\vphantom {{\rm{m}} {\rm{s}}}} \right.
} {\rm{s}}}\]
(3) \[14{\rm{ }}{{\rm{m}} {\left/
{\vphantom {{\rm{m}} {\rm{s}}}} \right.
} {\rm{s}}}\]
(4) \[2{\rm{ }}{{\rm{m}} {\left/
{\vphantom {{\rm{m}} {\rm{s}}}} \right.
} {\rm{s}}}\]
Answer
567k+ views
Hint:We will utilize the concept of thermal expansion or compression of given copper wire. The expression for force developed in the wire provides us with the relationship between Young's modulus, cross-sectional area, thermal expansion coefficient, and change in the wire temperature.
Complete step by step answer:
Given:
The temperature at which wire is taut with negligible tension is \[{T_2} = 60^\circ {\rm{C}}\].
The speed of transverse waves in the given wire is \[V = 10x{\rm{ m}}{{\rm{s}}^{ - 1}}\].
The temperature at the speed of transverse waves v is \[{T_1} = 60^\circ {\rm{C}}\].
The value of Young's modulus of copper wire is \[{Y_{Cu}} = 1.6 \times {10^{11}}{\rm{ Pa}}\].
The coefficient of linear expansion of copper wire is \[{\alpha _{Cu}} = 1.8 \times {10^{ - 6}}{\rm{ }}^\circ {{\rm{C}}^{ - 1}}\].
The density of copper wire is \[{\rho _{Cu}} = 9000{\rm{ kg }}{{\rm{m}}^{ - 3}}\].
We have to evaluate the value of 'x'
Let us write the expression for the change in copper wire length when its temperature changed from \[{T_2}\] to \[{T_1}\].
\[\Delta l = l{\alpha _{Cu}}\Delta T\]
Here l is the length of the given wire and \[\Delta T\] is the temperature change.
We know that the expression for force of thermal expansion or compression of the given copper wire can be written as:
\[F = YA{\alpha _{Cu}}\Delta T\]
Here A is the cross-sectional area of the wire.
Let us write the expression for the speed of transverse of the given copper wire.
\[V = \sqrt {\dfrac{F}{{A\rho }}} \]
Substitute \[YA\alpha \Delta T\] for F in the above expression.
\[\begin{array}{l}
V = \sqrt {\dfrac{{{Y_{Cu}}A{\alpha _{Cu}}\Delta T}}{{A\rho }}} \\
= \sqrt {\dfrac{{{Y_{Cu}}{\alpha _{Cu}}\left( {{T_2} - {T_1}} \right)}}{\rho }}
\end{array}\]
Substitute \[10x{\rm{ m}}{{\rm{s}}^{ - 1}}\] for V, \[1.8 \times {10^{ - 6}}{\rm{ }}^\circ {{\rm{C}}^{ - 1}}\] for \[{\alpha _{Cu}}\], \[1.6 \times {10^{11}}{\rm{ Pa}}\] for \[{Y_{Cu}}\], \[60^\circ {\rm{C}}\] for \[{T_2}\], and \[10^\circ {\rm{C}}\] for \[{T_1}\] and \[9000{\rm{ kg }}{{\rm{m}}^{ - 3}}\] for \[{\rho _{Cu}}\] in the above expression.
\[\begin{array}{l}
\Rightarrow 10x{\rm{ m}}{{\rm{s}}^{ - 1}} = \sqrt {\dfrac{{\left( {1.6 \times {{10}^{11}}{\rm{ Pa}}} \right)\left( {1.8 \times {{10}^{ - 6}}{\rm{ }}^\circ {{\rm{C}}^{ - 1}}} \right)\left( {60^\circ {\rm{C}} - 10^\circ {\rm{C}}} \right)}}{{9000{\rm{ kg }}{{\rm{m}}^{ - 3}}}}} \\
\Rightarrow 10x{\rm{ m}}{{\rm{s}}^{ - 1}} = \sqrt {\dfrac{{\left( {1.6 \times {{10}^{11}}{\rm{ Pa}} \times \dfrac{{{{\rm{N}} {\left/
{\vphantom {{\rm{N}} {{{\rm{m}}^2}}}} \right.
} {{{\rm{m}}^2}}}}}{{{\rm{Pa}}}} \times \dfrac{{{{{\rm{kg}} \cdot {\rm{m}}} {\left/
{\vphantom {{{\rm{kg}} \cdot {\rm{m}}} {{{\rm{s}}^2}}}} \right.
} {{{\rm{s}}^2}}}}}{{\rm{N}}}} \right)\left( {1.8 \times {{10}^{ - 6}}{\rm{ }}^\circ {{\rm{C}}^{ - 1}}} \right)\left( {60^\circ {\rm{C}} - 10^\circ {\rm{C}}} \right)}}{{9000{\rm{ kg }}{{\rm{m}}^{ - 3}}}}} \\
\Rightarrow 10x{\rm{ m}}{{\rm{s}}^{ - 1}} = \sqrt {1600{\rm{ }}{{\rm{m}}^2}{{\rm{s}}^{ - 2}}} \\
\Rightarrow 10x{\rm{ m}}{{\rm{s}}^{ - 1}} = 40{\rm{m}}{{\rm{s}}^{ - 1}}
\end{array}\]
From the above expression, we get:
\[x = 4\]
Therefore, we can say that the value of x is 4, and option (1) is correct.
Note:We can remember Pascal's conversion to Newton-meter and converting Newton into its base units (kilogram, meter, and second). We also have to be extra careful while rearranging the final expression.
Complete step by step answer:
Given:
The temperature at which wire is taut with negligible tension is \[{T_2} = 60^\circ {\rm{C}}\].
The speed of transverse waves in the given wire is \[V = 10x{\rm{ m}}{{\rm{s}}^{ - 1}}\].
The temperature at the speed of transverse waves v is \[{T_1} = 60^\circ {\rm{C}}\].
The value of Young's modulus of copper wire is \[{Y_{Cu}} = 1.6 \times {10^{11}}{\rm{ Pa}}\].
The coefficient of linear expansion of copper wire is \[{\alpha _{Cu}} = 1.8 \times {10^{ - 6}}{\rm{ }}^\circ {{\rm{C}}^{ - 1}}\].
The density of copper wire is \[{\rho _{Cu}} = 9000{\rm{ kg }}{{\rm{m}}^{ - 3}}\].
We have to evaluate the value of 'x'
Let us write the expression for the change in copper wire length when its temperature changed from \[{T_2}\] to \[{T_1}\].
\[\Delta l = l{\alpha _{Cu}}\Delta T\]
Here l is the length of the given wire and \[\Delta T\] is the temperature change.
We know that the expression for force of thermal expansion or compression of the given copper wire can be written as:
\[F = YA{\alpha _{Cu}}\Delta T\]
Here A is the cross-sectional area of the wire.
Let us write the expression for the speed of transverse of the given copper wire.
\[V = \sqrt {\dfrac{F}{{A\rho }}} \]
Substitute \[YA\alpha \Delta T\] for F in the above expression.
\[\begin{array}{l}
V = \sqrt {\dfrac{{{Y_{Cu}}A{\alpha _{Cu}}\Delta T}}{{A\rho }}} \\
= \sqrt {\dfrac{{{Y_{Cu}}{\alpha _{Cu}}\left( {{T_2} - {T_1}} \right)}}{\rho }}
\end{array}\]
Substitute \[10x{\rm{ m}}{{\rm{s}}^{ - 1}}\] for V, \[1.8 \times {10^{ - 6}}{\rm{ }}^\circ {{\rm{C}}^{ - 1}}\] for \[{\alpha _{Cu}}\], \[1.6 \times {10^{11}}{\rm{ Pa}}\] for \[{Y_{Cu}}\], \[60^\circ {\rm{C}}\] for \[{T_2}\], and \[10^\circ {\rm{C}}\] for \[{T_1}\] and \[9000{\rm{ kg }}{{\rm{m}}^{ - 3}}\] for \[{\rho _{Cu}}\] in the above expression.
\[\begin{array}{l}
\Rightarrow 10x{\rm{ m}}{{\rm{s}}^{ - 1}} = \sqrt {\dfrac{{\left( {1.6 \times {{10}^{11}}{\rm{ Pa}}} \right)\left( {1.8 \times {{10}^{ - 6}}{\rm{ }}^\circ {{\rm{C}}^{ - 1}}} \right)\left( {60^\circ {\rm{C}} - 10^\circ {\rm{C}}} \right)}}{{9000{\rm{ kg }}{{\rm{m}}^{ - 3}}}}} \\
\Rightarrow 10x{\rm{ m}}{{\rm{s}}^{ - 1}} = \sqrt {\dfrac{{\left( {1.6 \times {{10}^{11}}{\rm{ Pa}} \times \dfrac{{{{\rm{N}} {\left/
{\vphantom {{\rm{N}} {{{\rm{m}}^2}}}} \right.
} {{{\rm{m}}^2}}}}}{{{\rm{Pa}}}} \times \dfrac{{{{{\rm{kg}} \cdot {\rm{m}}} {\left/
{\vphantom {{{\rm{kg}} \cdot {\rm{m}}} {{{\rm{s}}^2}}}} \right.
} {{{\rm{s}}^2}}}}}{{\rm{N}}}} \right)\left( {1.8 \times {{10}^{ - 6}}{\rm{ }}^\circ {{\rm{C}}^{ - 1}}} \right)\left( {60^\circ {\rm{C}} - 10^\circ {\rm{C}}} \right)}}{{9000{\rm{ kg }}{{\rm{m}}^{ - 3}}}}} \\
\Rightarrow 10x{\rm{ m}}{{\rm{s}}^{ - 1}} = \sqrt {1600{\rm{ }}{{\rm{m}}^2}{{\rm{s}}^{ - 2}}} \\
\Rightarrow 10x{\rm{ m}}{{\rm{s}}^{ - 1}} = 40{\rm{m}}{{\rm{s}}^{ - 1}}
\end{array}\]
From the above expression, we get:
\[x = 4\]
Therefore, we can say that the value of x is 4, and option (1) is correct.
Note:We can remember Pascal's conversion to Newton-meter and converting Newton into its base units (kilogram, meter, and second). We also have to be extra careful while rearranging the final expression.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

