Answer

Verified

401.1k+ views

**Hint:**According to the ohm’s law, resistance is the ratio of current and potential difference but resistance also depends on the dimensions of a conductor, it is inversely proportional to the area and hence inversely proportional to the square of length of conductor. The heat depends on the square of current, resistance and time. Current density can also be written as the ratio of electric field inside the conductor and area. Using the above mentioned relations, we can determine the correct graph representations.

**Complete answer:**

Given a conductor I in the shape of a cone, Therefore, its area is variable. As the battery has a constant emf, the voltage across the conductor as well the current through it is constant. We know that,

$R=\rho \dfrac{l}{A}$

Here, $R$ is the resistance

$\rho $ is the resistivity

$l$ is the length

$A$ is the area of cross section

From the above equation, $R\propto \dfrac{1}{A}$ therefore, as the area increases, the resistance decreases.

The heat generated in a circuit is

$H={{I}^{2}}Rt$

Here, $H$ is the heat generated

$I$ is the current in the circuit

$t$ is the time taken

From the above equation as resistance is inversely proportional to the area, heat and area will be related as .

$\begin{align}

& H\propto \dfrac{1}{A} \\

& \Rightarrow H\propto \dfrac{1}{{{x}^{2}}} \\

\end{align}$

Therefore, the heat is inversely proportional to the square of length.

The current density is given as-

$J=\dfrac{I}{A}$ - (1)

Here, $J$ is the current density and it is the current per unit area.

Current density Is also given as

$J=\dfrac{E}{\rho }$ - (2)

Equating eq (1) and eq (2), we get

$\begin{align}

& \dfrac{I}{A}=\dfrac{E}{\rho } \\

& \Rightarrow \dfrac{E}{\rho }=\dfrac{I}{{{x}^{2}}} \\

\end{align}$

From the above equation, $E\propto \dfrac{1}{{{x}^{2}}}$

Therefore, the electric field inside the conductor is inversely proportional to the square of length.

Therefore, from the above relations, $H\propto \dfrac{1}{{{x}^{2}}}$ and $E\propto \dfrac{1}{{{x}^{2}}}$.

**Hence the correct representations of graphs are (B) and (D).**

**Note:**

The resistivity of a material is its resistance when the length is 1m and the area of the cross section is unity. The resistivity is a constant quantity and is different for different materials. The heat generated in a circuit is dissipated. Unlike current and area, current density is a scalar quantity.

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Mark and label the given geoinformation on the outline class 11 social science CBSE

When people say No pun intended what does that mea class 8 english CBSE

Name the states which share their boundary with Indias class 9 social science CBSE

Give an account of the Northern Plains of India class 9 social science CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Trending doubts

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference Between Plant Cell and Animal Cell

Which are the Top 10 Largest Countries of the World?

Write a letter to the principal requesting him to grant class 10 english CBSE

10 examples of evaporation in daily life with explanations

Give 10 examples for herbs , shrubs , climbers , creepers

Change the following sentences into negative and interrogative class 10 english CBSE