
A composite slab is prepared by pasting three slabs of thickness ${L}_{1}$, ${L}_{2}$, ${L}_{3}$ and thermal conductivity ${K}_{1}$, ${K}_{2}$, ${K}_{3}$. The slab has equal cross-sectional areas. Find the equivalent thermal conductivity.
A.$\dfrac { { K }_{ 1 }+{ K }_{ 2 }+{ K }_{ 3 } }{ { L }_{ 1 }+{ L }_{ 2 }+{ L }_{ 3 } }$
B.$\dfrac { { K }_{ 1 }{ K }_{ 2 }{ K }_{ 3 }({ L }_{ 1 }+{ L }_{ 2 }+{ L }_{ 3 }) }{ { K }_{ 1 }{ K }_{ 2 }{ L }_{ 3 }+{ L }_{ 1 }{ K }_{ 2 }{ L }_{ 3 }+{ K }_{ 1 }{ L }_{ 2 }{ K }_{ 3 } }$
C.$\dfrac { { K }_{ 1 }{ K }_{ 2 }{ L }_{ 3 }+{ L }_{ 1 }{ K }_{ 2 }{ L }_{ 3 }+{ K }_{ 1 }{ L }_{ 2 }{ K }_{ 3 } }{ { K }_{ 1 }+{ K }_{ 2 }+{ K }_{ 3 } }$
D.$\dfrac { { L }_{ 1 }+{ L }_{ 2 }+{ L }_{ 3 } }{ { K }_{ 1 }+{ K }_{ 2 }+{ K }_{ 3 } }$
Answer
584.4k+ views
Hint: Thermal Conductivity denoted by K is the property of the material indicating its ability to conduct heat. Use the formula for Fourier’s law of heat conduction showing the relation between slabs thickness, thermal conductivity and cross-sectional areas. Substitute the values in that formula and calculate equivalent thermal conductivity.
Complete answer:
Effective Resistance is given by,
$R={ R }_{ 1 }+{ R }_{ 2 }+{ R }_{ 3 }$ …(1)
From Fourier’s law of heat conduction, we know,
${ R }_{ N }=\dfrac { { L }_{ N } }{ { K }_{ N }A }$
Where, K is the materials conductivity
L is the plane thickness
A is the plane area
Substituting the values in the equation. (1) we get,
$\dfrac { { L }_{ 1 }+{ L }_{ 2 }+{ L }_{ 3 } }{ { K }_{ eq }A } =\dfrac { { L }_{ 1 } }{ { K }_{ 1 }A } +\dfrac { { L }_{ 2 } }{ { K }_{ 2 }A } +\dfrac { { L }_{ 3 } }{ { K }_{ 3 }A }$
Take A common from both the sides and cancel them.
$\Rightarrow \dfrac { { L }_{ 1 }+{ L }_{ 2 }+{ L }_{ 3 } }{ { K }_{ eq } } =\dfrac { { L }_{ 1 } }{ { K }_{ 1 } } +\dfrac { { L }_{ 2 } }{ { K }_{ 2 } } +\dfrac { { L }_{ 3 } }{ { K }_{ 3 } }$
$\Rightarrow \dfrac { { L }_{ 1 }+{ L }_{ 2 }+{ L }_{ 3 } }{ { K }_{ eq } } =\dfrac { { K }_{ 1 }{ K }_{ 2 }{ L }_{ 3 }+{ L }_{ 1 }{ K }_{ 2 }{ L }_{ 3 }+{ K }_{ 1 }{ L }_{ 2 }{ K }_{ 3 } }{ { K }_{ 1 }{ K }_{ 2 }{ K }_{ 3 } }$
$\Rightarrow { K }_{ eq }= \dfrac { { K }_{ 1 }{ K }_{ 2 }{ K }_{ 3 }({ L }_{ 1 }+{ L }_{ 2 }+{ L }_{ 3 }) }{ { K }_{ 3 }{ K }_{ 2 }{ L }_{ 1 }+{ K }_{ 1 }{ K }_{ 3 }{ L }_{ 2 }+{ K }_{ 1 }{ K }_{ 2 }{ L }_{ 3 } }$
Thus, the equivalent thermal conductivity is $\dfrac { { K }_{ 1 }{ K }_{ 2 }{ K }_{ 3 }({ L }_{ 1 }+{ L }_{ 2 }+{ L }_{ 3 }) }{ { K }_{ 3 }{ K }_{ 2 }{ L }_{ 1 }+{ K }_{ 1 }{ K }_{ 3 }{ L }_{ 2 }+{ K }_{ 1 }{ K }_{ 2 }{ L }_{ 3 } }$
Hence, the correct answer is option B.
Note:
Thermal conductivity is reciprocal of thermal resistivity. Heat transfer in materials of low thermal conductivity occurs at a lower rate as compared to the materials of high thermal conductivity. Thermal conductivity is an intrinsic property of the materials. It does not depend on the dimensions of the material. It depends on the temperature, density and moisture content of the material.
Complete answer:
Effective Resistance is given by,
$R={ R }_{ 1 }+{ R }_{ 2 }+{ R }_{ 3 }$ …(1)
From Fourier’s law of heat conduction, we know,
${ R }_{ N }=\dfrac { { L }_{ N } }{ { K }_{ N }A }$
Where, K is the materials conductivity
L is the plane thickness
A is the plane area
Substituting the values in the equation. (1) we get,
$\dfrac { { L }_{ 1 }+{ L }_{ 2 }+{ L }_{ 3 } }{ { K }_{ eq }A } =\dfrac { { L }_{ 1 } }{ { K }_{ 1 }A } +\dfrac { { L }_{ 2 } }{ { K }_{ 2 }A } +\dfrac { { L }_{ 3 } }{ { K }_{ 3 }A }$
Take A common from both the sides and cancel them.
$\Rightarrow \dfrac { { L }_{ 1 }+{ L }_{ 2 }+{ L }_{ 3 } }{ { K }_{ eq } } =\dfrac { { L }_{ 1 } }{ { K }_{ 1 } } +\dfrac { { L }_{ 2 } }{ { K }_{ 2 } } +\dfrac { { L }_{ 3 } }{ { K }_{ 3 } }$
$\Rightarrow \dfrac { { L }_{ 1 }+{ L }_{ 2 }+{ L }_{ 3 } }{ { K }_{ eq } } =\dfrac { { K }_{ 1 }{ K }_{ 2 }{ L }_{ 3 }+{ L }_{ 1 }{ K }_{ 2 }{ L }_{ 3 }+{ K }_{ 1 }{ L }_{ 2 }{ K }_{ 3 } }{ { K }_{ 1 }{ K }_{ 2 }{ K }_{ 3 } }$
$\Rightarrow { K }_{ eq }= \dfrac { { K }_{ 1 }{ K }_{ 2 }{ K }_{ 3 }({ L }_{ 1 }+{ L }_{ 2 }+{ L }_{ 3 }) }{ { K }_{ 3 }{ K }_{ 2 }{ L }_{ 1 }+{ K }_{ 1 }{ K }_{ 3 }{ L }_{ 2 }+{ K }_{ 1 }{ K }_{ 2 }{ L }_{ 3 } }$
Thus, the equivalent thermal conductivity is $\dfrac { { K }_{ 1 }{ K }_{ 2 }{ K }_{ 3 }({ L }_{ 1 }+{ L }_{ 2 }+{ L }_{ 3 }) }{ { K }_{ 3 }{ K }_{ 2 }{ L }_{ 1 }+{ K }_{ 1 }{ K }_{ 3 }{ L }_{ 2 }+{ K }_{ 1 }{ K }_{ 2 }{ L }_{ 3 } }$
Hence, the correct answer is option B.
Note:
Thermal conductivity is reciprocal of thermal resistivity. Heat transfer in materials of low thermal conductivity occurs at a lower rate as compared to the materials of high thermal conductivity. Thermal conductivity is an intrinsic property of the materials. It does not depend on the dimensions of the material. It depends on the temperature, density and moisture content of the material.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

