
A coin is tossed three times, where
(i) E: head on third toss, F: heads on first two tosses
(ii) E: at least two heads, F: at most two heads
(iii) E: at most two tails, F: at least one tail
Determine P(E|F).
A. 0.42, 0.50, 0.85
B. 0.50, 0.42, 0.85
C. 0.85, 0.42, 0.30
D. 0.42, 0.46, 0.47
Answer
602.1k+ views
Hint: Coin is tossed three times, therefore total outcomes are S= {HHH, HHT, THH, HTH, TTH, THT, HTT, TTT}. Use the formula, $P(E) = \dfrac{{Possible Outcomes}}{{Total Outcomes}}$ and $P(E|F) = \dfrac{{P(E\bigcap {F)} }}{{P(F)}}$ to find the solution.
Complete step-by-step answer:
Coins are tossed three times.
S= {HHH, HHT, THH, HTH, TTH, THT, HTT, TTT}
(i) E: head on third toss
E= {HHH, HTH, THH, TTH}
$P(E) = \dfrac{{Possible Outcomes}}{{Total Outcomes}}$
$\therefore P(E) = \dfrac{4}{8} = \dfrac{1}{2}$
F: heads on first two tosses
F= {HHH, HHT}
$\therefore P(F) = \dfrac{2}{8} = \dfrac{1}{4}$
Therefore, $P(E|F) = \dfrac{{P(E\bigcap {F)} }}{{P(F)}}$
Now, $
E\bigcap F = \{ HHH\} \\
P(E\bigcap {F) = \dfrac{1}{8}} \\
$
Using the equation, $
P(E|F) = \dfrac{{P(E\bigcap {F)} }}{{P(F)}} = \dfrac{{\dfrac{1}{8}}}{{\dfrac{1}{4}}} = \dfrac{1}{2} \\
P(E|F) = 0.50 \\
\\
$
(ii) E: at least two heads
Coins are tossed three times.
S= {HHH, HHT, THH, HTH, TTH, THT, HTT, TTT}
E= {HHT, THH, HTH, HHH}
$P(E) = \dfrac{4}{8} = \dfrac{1}{2}$
F: at most two heads
F = {HHT, THH, HTH, TTH, THT, HTT, TTT}
$P(F) = \dfrac{7}{8}$
Also, $
E\bigcap F = \{ HHT,THH,HTH\} \\
P(E\bigcap {F) = \dfrac{3}{8}} \\
$
Now, $
P(E|F) = \dfrac{{P(E\bigcap {F)} }}{{P(F)}} = \dfrac{{\dfrac{3}{8}}}{{\dfrac{7}{8}}} = \dfrac{3}{7} \\
P(E|F) = 0.42 \\
\\
$
(iii) E: at most two tails
Coins are tossed three times.
S= {HHH, HHT, THH, HTH, TTH, THT, HTT, TTT}
E= {HHH, HHT, HTH, THH, TTH, THT, HHT}
$P(E) = \dfrac{7}{8}$
F: at least one tail
F = {HHT, HTH, THH, TTH, THT, HTT, TTT}
$P(F) = \dfrac{7}{8}$
Also, $
E\bigcap F = \{ HHT,THH,HTH,TTH,THT,HTT\} \\
P(E\bigcap {F) = \dfrac{6}{8}} \\
$
Now,
$
P(E|F) = \dfrac{{P(E\bigcap {F)} }}{{P(F)}} = \dfrac{{\dfrac{6}{8}}}{{\dfrac{7}{8}}} = \dfrac{6}{7} \\
P(E|F) = 0.85 \\
\\
$
So, the correct option is Option (B).
Note: Whenever such a type of question appears note down all the outcomes of the event and the possible outcomes in the particular given case, as given in question is the coin is tossed 3 times. And then find the probability of all the cases using the standard formula.
Complete step-by-step answer:
Coins are tossed three times.
S= {HHH, HHT, THH, HTH, TTH, THT, HTT, TTT}
(i) E: head on third toss
E= {HHH, HTH, THH, TTH}
$P(E) = \dfrac{{Possible Outcomes}}{{Total Outcomes}}$
$\therefore P(E) = \dfrac{4}{8} = \dfrac{1}{2}$
F: heads on first two tosses
F= {HHH, HHT}
$\therefore P(F) = \dfrac{2}{8} = \dfrac{1}{4}$
Therefore, $P(E|F) = \dfrac{{P(E\bigcap {F)} }}{{P(F)}}$
Now, $
E\bigcap F = \{ HHH\} \\
P(E\bigcap {F) = \dfrac{1}{8}} \\
$
Using the equation, $
P(E|F) = \dfrac{{P(E\bigcap {F)} }}{{P(F)}} = \dfrac{{\dfrac{1}{8}}}{{\dfrac{1}{4}}} = \dfrac{1}{2} \\
P(E|F) = 0.50 \\
\\
$
(ii) E: at least two heads
Coins are tossed three times.
S= {HHH, HHT, THH, HTH, TTH, THT, HTT, TTT}
E= {HHT, THH, HTH, HHH}
$P(E) = \dfrac{4}{8} = \dfrac{1}{2}$
F: at most two heads
F = {HHT, THH, HTH, TTH, THT, HTT, TTT}
$P(F) = \dfrac{7}{8}$
Also, $
E\bigcap F = \{ HHT,THH,HTH\} \\
P(E\bigcap {F) = \dfrac{3}{8}} \\
$
Now, $
P(E|F) = \dfrac{{P(E\bigcap {F)} }}{{P(F)}} = \dfrac{{\dfrac{3}{8}}}{{\dfrac{7}{8}}} = \dfrac{3}{7} \\
P(E|F) = 0.42 \\
\\
$
(iii) E: at most two tails
Coins are tossed three times.
S= {HHH, HHT, THH, HTH, TTH, THT, HTT, TTT}
E= {HHH, HHT, HTH, THH, TTH, THT, HHT}
$P(E) = \dfrac{7}{8}$
F: at least one tail
F = {HHT, HTH, THH, TTH, THT, HTT, TTT}
$P(F) = \dfrac{7}{8}$
Also, $
E\bigcap F = \{ HHT,THH,HTH,TTH,THT,HTT\} \\
P(E\bigcap {F) = \dfrac{6}{8}} \\
$
Now,
$
P(E|F) = \dfrac{{P(E\bigcap {F)} }}{{P(F)}} = \dfrac{{\dfrac{6}{8}}}{{\dfrac{7}{8}}} = \dfrac{6}{7} \\
P(E|F) = 0.85 \\
\\
$
So, the correct option is Option (B).
Note: Whenever such a type of question appears note down all the outcomes of the event and the possible outcomes in the particular given case, as given in question is the coin is tossed 3 times. And then find the probability of all the cases using the standard formula.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

