
A coin is tossed three times, where
(i) E: head on third toss, F: heads on first two tosses
(ii) E: at least two heads, F: at most two heads
(iii) E: at most two tails, F: at least one tail
Determine P(E|F).
A. 0.42, 0.50, 0.85
B. 0.50, 0.42, 0.85
C. 0.85, 0.42, 0.30
D. 0.42, 0.46, 0.47
Answer
603.3k+ views
Hint: Coin is tossed three times, therefore total outcomes are S= {HHH, HHT, THH, HTH, TTH, THT, HTT, TTT}. Use the formula, $P(E) = \dfrac{{Possible Outcomes}}{{Total Outcomes}}$ and $P(E|F) = \dfrac{{P(E\bigcap {F)} }}{{P(F)}}$ to find the solution.
Complete step-by-step answer:
Coins are tossed three times.
S= {HHH, HHT, THH, HTH, TTH, THT, HTT, TTT}
(i) E: head on third toss
E= {HHH, HTH, THH, TTH}
$P(E) = \dfrac{{Possible Outcomes}}{{Total Outcomes}}$
$\therefore P(E) = \dfrac{4}{8} = \dfrac{1}{2}$
F: heads on first two tosses
F= {HHH, HHT}
$\therefore P(F) = \dfrac{2}{8} = \dfrac{1}{4}$
Therefore, $P(E|F) = \dfrac{{P(E\bigcap {F)} }}{{P(F)}}$
Now, $
E\bigcap F = \{ HHH\} \\
P(E\bigcap {F) = \dfrac{1}{8}} \\
$
Using the equation, $
P(E|F) = \dfrac{{P(E\bigcap {F)} }}{{P(F)}} = \dfrac{{\dfrac{1}{8}}}{{\dfrac{1}{4}}} = \dfrac{1}{2} \\
P(E|F) = 0.50 \\
\\
$
(ii) E: at least two heads
Coins are tossed three times.
S= {HHH, HHT, THH, HTH, TTH, THT, HTT, TTT}
E= {HHT, THH, HTH, HHH}
$P(E) = \dfrac{4}{8} = \dfrac{1}{2}$
F: at most two heads
F = {HHT, THH, HTH, TTH, THT, HTT, TTT}
$P(F) = \dfrac{7}{8}$
Also, $
E\bigcap F = \{ HHT,THH,HTH\} \\
P(E\bigcap {F) = \dfrac{3}{8}} \\
$
Now, $
P(E|F) = \dfrac{{P(E\bigcap {F)} }}{{P(F)}} = \dfrac{{\dfrac{3}{8}}}{{\dfrac{7}{8}}} = \dfrac{3}{7} \\
P(E|F) = 0.42 \\
\\
$
(iii) E: at most two tails
Coins are tossed three times.
S= {HHH, HHT, THH, HTH, TTH, THT, HTT, TTT}
E= {HHH, HHT, HTH, THH, TTH, THT, HHT}
$P(E) = \dfrac{7}{8}$
F: at least one tail
F = {HHT, HTH, THH, TTH, THT, HTT, TTT}
$P(F) = \dfrac{7}{8}$
Also, $
E\bigcap F = \{ HHT,THH,HTH,TTH,THT,HTT\} \\
P(E\bigcap {F) = \dfrac{6}{8}} \\
$
Now,
$
P(E|F) = \dfrac{{P(E\bigcap {F)} }}{{P(F)}} = \dfrac{{\dfrac{6}{8}}}{{\dfrac{7}{8}}} = \dfrac{6}{7} \\
P(E|F) = 0.85 \\
\\
$
So, the correct option is Option (B).
Note: Whenever such a type of question appears note down all the outcomes of the event and the possible outcomes in the particular given case, as given in question is the coin is tossed 3 times. And then find the probability of all the cases using the standard formula.
Complete step-by-step answer:
Coins are tossed three times.
S= {HHH, HHT, THH, HTH, TTH, THT, HTT, TTT}
(i) E: head on third toss
E= {HHH, HTH, THH, TTH}
$P(E) = \dfrac{{Possible Outcomes}}{{Total Outcomes}}$
$\therefore P(E) = \dfrac{4}{8} = \dfrac{1}{2}$
F: heads on first two tosses
F= {HHH, HHT}
$\therefore P(F) = \dfrac{2}{8} = \dfrac{1}{4}$
Therefore, $P(E|F) = \dfrac{{P(E\bigcap {F)} }}{{P(F)}}$
Now, $
E\bigcap F = \{ HHH\} \\
P(E\bigcap {F) = \dfrac{1}{8}} \\
$
Using the equation, $
P(E|F) = \dfrac{{P(E\bigcap {F)} }}{{P(F)}} = \dfrac{{\dfrac{1}{8}}}{{\dfrac{1}{4}}} = \dfrac{1}{2} \\
P(E|F) = 0.50 \\
\\
$
(ii) E: at least two heads
Coins are tossed three times.
S= {HHH, HHT, THH, HTH, TTH, THT, HTT, TTT}
E= {HHT, THH, HTH, HHH}
$P(E) = \dfrac{4}{8} = \dfrac{1}{2}$
F: at most two heads
F = {HHT, THH, HTH, TTH, THT, HTT, TTT}
$P(F) = \dfrac{7}{8}$
Also, $
E\bigcap F = \{ HHT,THH,HTH\} \\
P(E\bigcap {F) = \dfrac{3}{8}} \\
$
Now, $
P(E|F) = \dfrac{{P(E\bigcap {F)} }}{{P(F)}} = \dfrac{{\dfrac{3}{8}}}{{\dfrac{7}{8}}} = \dfrac{3}{7} \\
P(E|F) = 0.42 \\
\\
$
(iii) E: at most two tails
Coins are tossed three times.
S= {HHH, HHT, THH, HTH, TTH, THT, HTT, TTT}
E= {HHH, HHT, HTH, THH, TTH, THT, HHT}
$P(E) = \dfrac{7}{8}$
F: at least one tail
F = {HHT, HTH, THH, TTH, THT, HTT, TTT}
$P(F) = \dfrac{7}{8}$
Also, $
E\bigcap F = \{ HHT,THH,HTH,TTH,THT,HTT\} \\
P(E\bigcap {F) = \dfrac{6}{8}} \\
$
Now,
$
P(E|F) = \dfrac{{P(E\bigcap {F)} }}{{P(F)}} = \dfrac{{\dfrac{6}{8}}}{{\dfrac{7}{8}}} = \dfrac{6}{7} \\
P(E|F) = 0.85 \\
\\
$
So, the correct option is Option (B).
Note: Whenever such a type of question appears note down all the outcomes of the event and the possible outcomes in the particular given case, as given in question is the coin is tossed 3 times. And then find the probability of all the cases using the standard formula.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

