
A circle is described on a focal chord as diameter; If m be the tangent of the inclination of the chord to the axis, prove that the equation on the circle is
${x^2} + {y^2} - 2ax\left( {1 + \dfrac{2}{{{m^2}}}} \right) - \dfrac{{4ay}}{m} - 3{a^2} = 0$
Answer
615.3k+ views
Hint: Simply by applying the parametric equation of parabola and equation of circle we can easily solve the question.
Complete step-by-step answer:
Let the end points of the focal chord be $P\left( {at_1^2,2a{t_1}} \right)$ and \[Q\left( {at_2^2,2a{t_2}} \right)\]
Slope of PQ = $ \dfrac{{2a\left( {{t_2} - {t_1}} \right)}}{{a\left( {{t_2} - {t_1}} \right)\left( {{t_2} + {t_1}} \right)}}$
This gives us,
$\dfrac{{2a{t_2} - 2a{t_1}}}{{at_2^2 - at_1^2}}$ = m
$ \Rightarrow \dfrac{{2a\left( {{t_2} - {t_1}} \right)}}{{a\left( {{t_2} - {t_1}} \right)\left( {{t_2} + {t_1}} \right)}}$ = m
$ \Rightarrow $ ${t_1} + {t_2} = \dfrac{2}{m}$ Equation (1)
As you know that parametric form of equation of circle is
\[\left( {x - at_1^2} \right)\left( {x - at_2^2} \right) + \left( {y - 2a{t_1}} \right)\left( {y - 2a{t_2}} \right) = 0\]
Simplifying further, we get,
$\Rightarrow$ \[{x^2} - ax\left( {t_1^2 + t_2^2} \right) + {a^2}t_1^2t_2^2 + {y^2} - 2ay\left( {{t_1} + {t_2}} \right) + 4{a^2}{t_1}{t_2} = 0\]
$\Rightarrow$ \[{x^2} - ax\left( {{{\left( {t_1^2 + t_2^2} \right)}^2} - 2{t_1}{t_2}} \right) + {a^2}t_1^2t_2^2 + {y^2} - 2ay\left( {{t_1} + {t_2}} \right) + 4{a^2}{t_1}{t_2} = 0\]
As we know that for focal chord, ${t_1}{t_2} = - 1$
$\Rightarrow$ \[{x^2} - ax\left( {{{\left( {t_1^2 + t_2^2} \right)}^2} + 2} \right) + {a^2} + {y^2} - 2ay\left( {{t_1} + {t_2}} \right) - 4{a^2} = 0\]
$\Rightarrow$ \[{x^2} - ax\left( {{{\left( {t_1^2 + t_2^2} \right)}^2} + 2} \right) + {y^2} - 2ay\left( {{t_1} + {t_2}} \right) - 3{a^2} = 0\]
Now if we substitute Equation (1) in above equation
We get,
$\Rightarrow$ ${x^2} - ax\left( {{{\left( {\dfrac{2}{m}} \right)}^2} + 2} \right) + {y^2} - 2ay\left( {\dfrac{2}{m}} \right) - 3{a^2} = 0$
$ \Rightarrow {x^2} - ax\left( {\dfrac{4}{{{m^2}}} + 2} \right) + {y^2} - 2ay\left( {\dfrac{2}{m}} \right) - 3{a^2} = 0$
$ \Rightarrow {x^2} - 2ax\left( {\dfrac{2}{{{m^2}}} + 1} \right) + {y^2} - \left( {\dfrac{{4ay}}{m}} \right) - 3{a^2} = 0$
Hence Proved.
Note: To solve this question firstly you must be clear with the concept of parametric equation of parabola and equation of circle that can be written using two points on the circle. If you use these both then you can easily solve the question.
Complete step-by-step answer:
Let the end points of the focal chord be $P\left( {at_1^2,2a{t_1}} \right)$ and \[Q\left( {at_2^2,2a{t_2}} \right)\]
Slope of PQ = $ \dfrac{{2a\left( {{t_2} - {t_1}} \right)}}{{a\left( {{t_2} - {t_1}} \right)\left( {{t_2} + {t_1}} \right)}}$
This gives us,
$\dfrac{{2a{t_2} - 2a{t_1}}}{{at_2^2 - at_1^2}}$ = m
$ \Rightarrow \dfrac{{2a\left( {{t_2} - {t_1}} \right)}}{{a\left( {{t_2} - {t_1}} \right)\left( {{t_2} + {t_1}} \right)}}$ = m
$ \Rightarrow $ ${t_1} + {t_2} = \dfrac{2}{m}$ Equation (1)
As you know that parametric form of equation of circle is
\[\left( {x - at_1^2} \right)\left( {x - at_2^2} \right) + \left( {y - 2a{t_1}} \right)\left( {y - 2a{t_2}} \right) = 0\]
Simplifying further, we get,
$\Rightarrow$ \[{x^2} - ax\left( {t_1^2 + t_2^2} \right) + {a^2}t_1^2t_2^2 + {y^2} - 2ay\left( {{t_1} + {t_2}} \right) + 4{a^2}{t_1}{t_2} = 0\]
$\Rightarrow$ \[{x^2} - ax\left( {{{\left( {t_1^2 + t_2^2} \right)}^2} - 2{t_1}{t_2}} \right) + {a^2}t_1^2t_2^2 + {y^2} - 2ay\left( {{t_1} + {t_2}} \right) + 4{a^2}{t_1}{t_2} = 0\]
As we know that for focal chord, ${t_1}{t_2} = - 1$
$\Rightarrow$ \[{x^2} - ax\left( {{{\left( {t_1^2 + t_2^2} \right)}^2} + 2} \right) + {a^2} + {y^2} - 2ay\left( {{t_1} + {t_2}} \right) - 4{a^2} = 0\]
$\Rightarrow$ \[{x^2} - ax\left( {{{\left( {t_1^2 + t_2^2} \right)}^2} + 2} \right) + {y^2} - 2ay\left( {{t_1} + {t_2}} \right) - 3{a^2} = 0\]
Now if we substitute Equation (1) in above equation
We get,
$\Rightarrow$ ${x^2} - ax\left( {{{\left( {\dfrac{2}{m}} \right)}^2} + 2} \right) + {y^2} - 2ay\left( {\dfrac{2}{m}} \right) - 3{a^2} = 0$
$ \Rightarrow {x^2} - ax\left( {\dfrac{4}{{{m^2}}} + 2} \right) + {y^2} - 2ay\left( {\dfrac{2}{m}} \right) - 3{a^2} = 0$
$ \Rightarrow {x^2} - 2ax\left( {\dfrac{2}{{{m^2}}} + 1} \right) + {y^2} - \left( {\dfrac{{4ay}}{m}} \right) - 3{a^2} = 0$
Hence Proved.
Note: To solve this question firstly you must be clear with the concept of parametric equation of parabola and equation of circle that can be written using two points on the circle. If you use these both then you can easily solve the question.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

