
A circle is described on a focal chord as diameter; If m be the tangent of the inclination of the chord to the axis, prove that the equation on the circle is
${x^2} + {y^2} - 2ax\left( {1 + \dfrac{2}{{{m^2}}}} \right) - \dfrac{{4ay}}{m} - 3{a^2} = 0$
Answer
603.6k+ views
Hint: Simply by applying the parametric equation of parabola and equation of circle we can easily solve the question.
Complete step-by-step answer:
Let the end points of the focal chord be $P\left( {at_1^2,2a{t_1}} \right)$ and \[Q\left( {at_2^2,2a{t_2}} \right)\]
Slope of PQ = $ \dfrac{{2a\left( {{t_2} - {t_1}} \right)}}{{a\left( {{t_2} - {t_1}} \right)\left( {{t_2} + {t_1}} \right)}}$
This gives us,
$\dfrac{{2a{t_2} - 2a{t_1}}}{{at_2^2 - at_1^2}}$ = m
$ \Rightarrow \dfrac{{2a\left( {{t_2} - {t_1}} \right)}}{{a\left( {{t_2} - {t_1}} \right)\left( {{t_2} + {t_1}} \right)}}$ = m
$ \Rightarrow $ ${t_1} + {t_2} = \dfrac{2}{m}$ Equation (1)
As you know that parametric form of equation of circle is
\[\left( {x - at_1^2} \right)\left( {x - at_2^2} \right) + \left( {y - 2a{t_1}} \right)\left( {y - 2a{t_2}} \right) = 0\]
Simplifying further, we get,
$\Rightarrow$ \[{x^2} - ax\left( {t_1^2 + t_2^2} \right) + {a^2}t_1^2t_2^2 + {y^2} - 2ay\left( {{t_1} + {t_2}} \right) + 4{a^2}{t_1}{t_2} = 0\]
$\Rightarrow$ \[{x^2} - ax\left( {{{\left( {t_1^2 + t_2^2} \right)}^2} - 2{t_1}{t_2}} \right) + {a^2}t_1^2t_2^2 + {y^2} - 2ay\left( {{t_1} + {t_2}} \right) + 4{a^2}{t_1}{t_2} = 0\]
As we know that for focal chord, ${t_1}{t_2} = - 1$
$\Rightarrow$ \[{x^2} - ax\left( {{{\left( {t_1^2 + t_2^2} \right)}^2} + 2} \right) + {a^2} + {y^2} - 2ay\left( {{t_1} + {t_2}} \right) - 4{a^2} = 0\]
$\Rightarrow$ \[{x^2} - ax\left( {{{\left( {t_1^2 + t_2^2} \right)}^2} + 2} \right) + {y^2} - 2ay\left( {{t_1} + {t_2}} \right) - 3{a^2} = 0\]
Now if we substitute Equation (1) in above equation
We get,
$\Rightarrow$ ${x^2} - ax\left( {{{\left( {\dfrac{2}{m}} \right)}^2} + 2} \right) + {y^2} - 2ay\left( {\dfrac{2}{m}} \right) - 3{a^2} = 0$
$ \Rightarrow {x^2} - ax\left( {\dfrac{4}{{{m^2}}} + 2} \right) + {y^2} - 2ay\left( {\dfrac{2}{m}} \right) - 3{a^2} = 0$
$ \Rightarrow {x^2} - 2ax\left( {\dfrac{2}{{{m^2}}} + 1} \right) + {y^2} - \left( {\dfrac{{4ay}}{m}} \right) - 3{a^2} = 0$
Hence Proved.
Note: To solve this question firstly you must be clear with the concept of parametric equation of parabola and equation of circle that can be written using two points on the circle. If you use these both then you can easily solve the question.
Complete step-by-step answer:
Let the end points of the focal chord be $P\left( {at_1^2,2a{t_1}} \right)$ and \[Q\left( {at_2^2,2a{t_2}} \right)\]
Slope of PQ = $ \dfrac{{2a\left( {{t_2} - {t_1}} \right)}}{{a\left( {{t_2} - {t_1}} \right)\left( {{t_2} + {t_1}} \right)}}$
This gives us,
$\dfrac{{2a{t_2} - 2a{t_1}}}{{at_2^2 - at_1^2}}$ = m
$ \Rightarrow \dfrac{{2a\left( {{t_2} - {t_1}} \right)}}{{a\left( {{t_2} - {t_1}} \right)\left( {{t_2} + {t_1}} \right)}}$ = m
$ \Rightarrow $ ${t_1} + {t_2} = \dfrac{2}{m}$ Equation (1)
As you know that parametric form of equation of circle is
\[\left( {x - at_1^2} \right)\left( {x - at_2^2} \right) + \left( {y - 2a{t_1}} \right)\left( {y - 2a{t_2}} \right) = 0\]
Simplifying further, we get,
$\Rightarrow$ \[{x^2} - ax\left( {t_1^2 + t_2^2} \right) + {a^2}t_1^2t_2^2 + {y^2} - 2ay\left( {{t_1} + {t_2}} \right) + 4{a^2}{t_1}{t_2} = 0\]
$\Rightarrow$ \[{x^2} - ax\left( {{{\left( {t_1^2 + t_2^2} \right)}^2} - 2{t_1}{t_2}} \right) + {a^2}t_1^2t_2^2 + {y^2} - 2ay\left( {{t_1} + {t_2}} \right) + 4{a^2}{t_1}{t_2} = 0\]
As we know that for focal chord, ${t_1}{t_2} = - 1$
$\Rightarrow$ \[{x^2} - ax\left( {{{\left( {t_1^2 + t_2^2} \right)}^2} + 2} \right) + {a^2} + {y^2} - 2ay\left( {{t_1} + {t_2}} \right) - 4{a^2} = 0\]
$\Rightarrow$ \[{x^2} - ax\left( {{{\left( {t_1^2 + t_2^2} \right)}^2} + 2} \right) + {y^2} - 2ay\left( {{t_1} + {t_2}} \right) - 3{a^2} = 0\]
Now if we substitute Equation (1) in above equation
We get,
$\Rightarrow$ ${x^2} - ax\left( {{{\left( {\dfrac{2}{m}} \right)}^2} + 2} \right) + {y^2} - 2ay\left( {\dfrac{2}{m}} \right) - 3{a^2} = 0$
$ \Rightarrow {x^2} - ax\left( {\dfrac{4}{{{m^2}}} + 2} \right) + {y^2} - 2ay\left( {\dfrac{2}{m}} \right) - 3{a^2} = 0$
$ \Rightarrow {x^2} - 2ax\left( {\dfrac{2}{{{m^2}}} + 1} \right) + {y^2} - \left( {\dfrac{{4ay}}{m}} \right) - 3{a^2} = 0$
Hence Proved.
Note: To solve this question firstly you must be clear with the concept of parametric equation of parabola and equation of circle that can be written using two points on the circle. If you use these both then you can easily solve the question.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

