
A chord of a circle is equal to the radius of the circle. Find the angle subtended by the chord at a point on the minor arc and also at a point on the major arc.
Answer
515.7k+ views
Hint: Use the rule of the angle subtended by an arc at the centre is double the angle subtended by it at any point on the remaining part of the circle.
Complete step-by-step answer:
$OA = OB = AB$(Given)
Since, all the sides of the triangle are equal
$\Delta OAB$is an equilateral triangle, and we know that in an equilateral triangle all the angles are equal to ${60^ \circ }$.
Therefore, $\angle AOB = {60^ \circ }$
There is a rule which states that the angle subtended by an arc at the centre is double the angle subtended by it at any point on the remaining part of the circle.
Therefore,
$\dfrac{1}{2} \times {60^ \circ } = {30^ \circ }$
Now, since $ADBC$is a cyclic quadrilateral.
Therefore the sum of the opposite angles will be equal to${180^ \circ }$.
Therefore,
$\angle ADB + \angle ACB = {180^ \circ }$
Again applying the rule which states that the sum of either pair of opposite angles of a cyclic quadrilateral is${180^ \circ }$.
Therefore,
$\angle ADB + {30^ \circ } = {180^ \circ }$
Sending the angles on one side, we get,
$\angle ADB = {180^ \circ } - {30^ \circ }$
On further solving,
Answer =$\angle ADB = {150^ \circ }$
Note: Make sure to take the correct values in the equation while using the above rule.
Complete step-by-step answer:
$OA = OB = AB$(Given)
Since, all the sides of the triangle are equal
$\Delta OAB$is an equilateral triangle, and we know that in an equilateral triangle all the angles are equal to ${60^ \circ }$.
Therefore, $\angle AOB = {60^ \circ }$
There is a rule which states that the angle subtended by an arc at the centre is double the angle subtended by it at any point on the remaining part of the circle.
Therefore,
$\dfrac{1}{2} \times {60^ \circ } = {30^ \circ }$
Now, since $ADBC$is a cyclic quadrilateral.
Therefore the sum of the opposite angles will be equal to${180^ \circ }$.
Therefore,
$\angle ADB + \angle ACB = {180^ \circ }$
Again applying the rule which states that the sum of either pair of opposite angles of a cyclic quadrilateral is${180^ \circ }$.
Therefore,
$\angle ADB + {30^ \circ } = {180^ \circ }$
Sending the angles on one side, we get,
$\angle ADB = {180^ \circ } - {30^ \circ }$
On further solving,
Answer =$\angle ADB = {150^ \circ }$
Note: Make sure to take the correct values in the equation while using the above rule.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Trending doubts
Distinguish between the reserved forests and protected class 10 biology CBSE

A boat goes 24 km upstream and 28 km downstream in class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What are the public facilities provided by the government? Also explain each facility

Difference between mass and weight class 10 physics CBSE

Statistics in singular sense includes A Collection class 10 maths CBSE
