
A car travels a distance 50 km with a velocity 25 km per hour and then 60 km with a velocity 20 km per hour in the same direction. Calculate the average velocity of car.
(A) $11km{h^{ - 1}}$
(B) $22.5km{h^{ - 1}}$
(C) $22km{h^{ - 1}}$
(D) $45km{h^{ - 1}}$
Answer
583.8k+ views
Hint :
In order to solve this problem first we have to calculate the time taken by car to travel 50 km distance with 25 km per hour.
After then calculate the time taken by car to travel 60 km distance with 20 km per hour.
At last put these values in following expression, we get average velocity of car i.e.,
Average velocity $ = $ Total displacement $/$ Total time
Complete step by step solution :
Given that the car travels first 50 km with velocity 25 km per hour. So, the time taken by car is
Time $ = $ Displacement $/$ Velocity
${t_1} = \dfrac{{{d_1}}}{{{v_1}}}$
$ \Rightarrow {t_1} = \dfrac{{50}}{{25}} = 2hr$ …..(1)
Now the car travels the next 60 km with velocity 20 km per hour. So, time taken by car is
${t_2} = \dfrac{{{d_2}}}{{{v_2}}}$
$\Rightarrow {t_2} = \dfrac{{60}}{{20}} = 3hr$ …..(2)
We know that average velocity is given as
Average velocity $ = $ Total displacement $/$ Total time
Average velocity $ = \dfrac{{{d_1} + {d_2}}}{{{t_1} + {t_2}}}$
$ = \dfrac{{50 + 60}}{{2 + 3}}$
$\Rightarrow {v_{avg}} = \dfrac{{110}}{5}$
$\Rightarrow {v_{avg}} = $ 22 km per hour
Hence, the average velocity of a car is 22 km per hour.
So, option C is the correct answer.
Note :
- Many times, students may get confused between average velocity and instantaneous velocity.
- Average velocity $ = $ Total displacement travelled by body $/$ Total time taken by body
${\overrightarrow v _{avg}} = \dfrac{{\Delta \overrightarrow r }}{{\Delta t}}$
When $\Delta t \to 0$ then average velocity is converted into instantaneous velocity.
So, ${\overrightarrow v _{inst}} = \dfrac{{d\overrightarrow r }}{{dt}}$
Rate of change in displacement with respect to time.
In order to solve this problem first we have to calculate the time taken by car to travel 50 km distance with 25 km per hour.
After then calculate the time taken by car to travel 60 km distance with 20 km per hour.
At last put these values in following expression, we get average velocity of car i.e.,
Average velocity $ = $ Total displacement $/$ Total time
Complete step by step solution :
Given that the car travels first 50 km with velocity 25 km per hour. So, the time taken by car is
Time $ = $ Displacement $/$ Velocity
${t_1} = \dfrac{{{d_1}}}{{{v_1}}}$
$ \Rightarrow {t_1} = \dfrac{{50}}{{25}} = 2hr$ …..(1)
Now the car travels the next 60 km with velocity 20 km per hour. So, time taken by car is
${t_2} = \dfrac{{{d_2}}}{{{v_2}}}$
$\Rightarrow {t_2} = \dfrac{{60}}{{20}} = 3hr$ …..(2)
We know that average velocity is given as
Average velocity $ = $ Total displacement $/$ Total time
Average velocity $ = \dfrac{{{d_1} + {d_2}}}{{{t_1} + {t_2}}}$
$ = \dfrac{{50 + 60}}{{2 + 3}}$
$\Rightarrow {v_{avg}} = \dfrac{{110}}{5}$
$\Rightarrow {v_{avg}} = $ 22 km per hour
Hence, the average velocity of a car is 22 km per hour.
So, option C is the correct answer.
Note :
- Many times, students may get confused between average velocity and instantaneous velocity.
- Average velocity $ = $ Total displacement travelled by body $/$ Total time taken by body
${\overrightarrow v _{avg}} = \dfrac{{\Delta \overrightarrow r }}{{\Delta t}}$
When $\Delta t \to 0$ then average velocity is converted into instantaneous velocity.
So, ${\overrightarrow v _{inst}} = \dfrac{{d\overrightarrow r }}{{dt}}$
Rate of change in displacement with respect to time.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

10 examples of friction in our daily life

