
A car of mass 10 metric ton rolls at 2 m/s along a level track and collides with a loaded car of the mass of 20 metric ton, standing at rest. If the cars couple together, the common speed after the collision is
(A) 1 m/s
(B) 0.67 m/s
(C) 0.5 m/s
(D) 0.3 m/s
Answer
576k+ views
Hint:We are given a two-body problem in which masses are given in which one body is initially moving while the second body is at rest. They collide with each other and after the collision, the two bodies stick to each other and move with a common velocity. We can use the law of conservation of linear momentum here.
Complete step by step answer:
The law of conservation of momentum states that the momentum of an isolated system remains constant.If no external force is acting on the system, so the linear momentum of the collision must be conserved.
Let the bodies be A and B.
\[{{M}_{a}}=\]10 mT
\[{{M}_{b}}=\]20 mT
Initial velocities,
\[{{u}_{a}}=\]2 m/s
\[{{u}_{b}}=\]0 m/s
Since both after collision stick together, let their common velocity be V.
Now applying the law of conservation of momentum, \[{{M}_{a}}{{u}_{a}}+{{M}_{b}}{{u}_{b}}=({{M}_{a}}+{{M}_{b}})V\]
Putting the values back into it, \[(10\times 2)+0=(10+20)\times V\]
\[20+0=30\times V\]
So V=0.67 m/s
Hence the two bodies after collision stick to one another and move with the common speed of 0.67 m/s.
So,option (B) is the correct answer.
Note: Here the masses were given in metric ton, we did not change into kg because in the equation the mass was there on both the sides, so ultimately they cancel out each other. This is an example of an elastic collision. Also, the system was isolated.
Complete step by step answer:
The law of conservation of momentum states that the momentum of an isolated system remains constant.If no external force is acting on the system, so the linear momentum of the collision must be conserved.
Let the bodies be A and B.
\[{{M}_{a}}=\]10 mT
\[{{M}_{b}}=\]20 mT
Initial velocities,
\[{{u}_{a}}=\]2 m/s
\[{{u}_{b}}=\]0 m/s
Since both after collision stick together, let their common velocity be V.
Now applying the law of conservation of momentum, \[{{M}_{a}}{{u}_{a}}+{{M}_{b}}{{u}_{b}}=({{M}_{a}}+{{M}_{b}})V\]
Putting the values back into it, \[(10\times 2)+0=(10+20)\times V\]
\[20+0=30\times V\]
So V=0.67 m/s
Hence the two bodies after collision stick to one another and move with the common speed of 0.67 m/s.
So,option (B) is the correct answer.
Note: Here the masses were given in metric ton, we did not change into kg because in the equation the mass was there on both the sides, so ultimately they cancel out each other. This is an example of an elastic collision. Also, the system was isolated.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Discuss the various forms of bacteria class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

