
A car accelerates from rest at a constant rate for first $10\text{ }s$ and covers a distance \[x\] . It converts a distance $y$ in next $10\text{ }s$ at the same acceleration. Which of the following is true?
(A) \[x=3y\]
(B) $y=3x$
(C) \[x=y\]
(D) $y=2x$
Answer
448.8k+ views
Hint: In the first case, take initial velocity zero because the car is at rest. Then find the final velocity using the given time, find the distance travelled in the first case.
In the second case, consider initial velocity(that is final velocity in first case),then find the distance travelled in second case. Compare the results from both the cases, we get a required relation.
Formula used
$\begin{align}
& v=u+at \\
& v\text{ is final velocity} \\
& u\text{ is initial velocity} \\
& a\text{ is acceleration} \\
& t\text{ is time taken} \\
\end{align}$
$\text{Distance travelled is given by }5=ut+\dfrac{1}{2}a{{t}^{2}}$
Complete step by step solution
First case: Initially, car at rest, it means.
$\begin{align}
& u\left( \text{initial velocity} \right)=0 \\
& \text{Final velocity is given by} \\
& \text{ }v=u+at \\
& \text{ }v=0+at \\
& \text{ }t=10s\text{ }a\text{ constant acceleration} \\
\end{align}$
$\begin{align}
& \text{ }V=10a \\
& \left( x \right)\text{ distance travelled is given by,} \\
& \text{ }s=ut+\dfrac{1}{2}a{{t}^{2}} \\
& \text{ }s=0+\dfrac{1}{2}a{{t}^{2}}\text{ } \\
\end{align}$
$\text{ }x=50a$…………. (1)
In second case:
\[\begin{align}
& \text{Initial velocity}=10a\text{ }\left( \text{ This is final velocity in first case} \right) \\
& \text{ }v=u+at \\
& \text{ }=100+10a \\
\end{align}\]
\[\text{ }v=20a\] final velocity in second case
\[\begin{align}
& \left( y \right)\text{ Distance travelled is given by} \\
& s=ut+\dfrac{1}{2}a{{t}^{2}} \\
& \text{ }=\left( 10a \right)\left( 10 \right)+\dfrac{1}{2}a{{\left( 10 \right)}^{2}} \\
& \text{ }=100a+50a \\
\end{align}\]
\[s=150a\]
\[y=150a\]…….. (2)
Divide equation (1) by (2)
$\begin{align}
& \dfrac{x}{y}=\dfrac{50}{150} \\
& \dfrac{x}{y}=\dfrac{1}{3} \\
& y=3x\text{ option(b)} \\
& \text{This is the required result}\text{.} \\
\end{align}$
Note: Discuss and derive the formula for
\[\text{Velocity time relation, }v=u+at\]
$\text{Position time relation, }s=ut+\dfrac{1}{2}a{{t}^{2}},\text{ (}s\text{ is distance covered)}$
$\text{Position velocity relation, }{{v}^{2}}-{{u}^{2}}=2\text{ }as$
In the second case, consider initial velocity(that is final velocity in first case),then find the distance travelled in second case. Compare the results from both the cases, we get a required relation.
Formula used
$\begin{align}
& v=u+at \\
& v\text{ is final velocity} \\
& u\text{ is initial velocity} \\
& a\text{ is acceleration} \\
& t\text{ is time taken} \\
\end{align}$
$\text{Distance travelled is given by }5=ut+\dfrac{1}{2}a{{t}^{2}}$
Complete step by step solution
First case: Initially, car at rest, it means.
$\begin{align}
& u\left( \text{initial velocity} \right)=0 \\
& \text{Final velocity is given by} \\
& \text{ }v=u+at \\
& \text{ }v=0+at \\
& \text{ }t=10s\text{ }a\text{ constant acceleration} \\
\end{align}$
$\begin{align}
& \text{ }V=10a \\
& \left( x \right)\text{ distance travelled is given by,} \\
& \text{ }s=ut+\dfrac{1}{2}a{{t}^{2}} \\
& \text{ }s=0+\dfrac{1}{2}a{{t}^{2}}\text{ } \\
\end{align}$
$\text{ }x=50a$…………. (1)
In second case:
\[\begin{align}
& \text{Initial velocity}=10a\text{ }\left( \text{ This is final velocity in first case} \right) \\
& \text{ }v=u+at \\
& \text{ }=100+10a \\
\end{align}\]
\[\text{ }v=20a\] final velocity in second case
\[\begin{align}
& \left( y \right)\text{ Distance travelled is given by} \\
& s=ut+\dfrac{1}{2}a{{t}^{2}} \\
& \text{ }=\left( 10a \right)\left( 10 \right)+\dfrac{1}{2}a{{\left( 10 \right)}^{2}} \\
& \text{ }=100a+50a \\
\end{align}\]
\[s=150a\]
\[y=150a\]…….. (2)
Divide equation (1) by (2)
$\begin{align}
& \dfrac{x}{y}=\dfrac{50}{150} \\
& \dfrac{x}{y}=\dfrac{1}{3} \\
& y=3x\text{ option(b)} \\
& \text{This is the required result}\text{.} \\
\end{align}$
Note: Discuss and derive the formula for
\[\text{Velocity time relation, }v=u+at\]
$\text{Position time relation, }s=ut+\dfrac{1}{2}a{{t}^{2}},\text{ (}s\text{ is distance covered)}$
$\text{Position velocity relation, }{{v}^{2}}-{{u}^{2}}=2\text{ }as$
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Trending doubts
Raindrops are spherical because of A Gravitational class 11 physics CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

Why is steel more elastic than rubber class 11 physics CBSE

Explain why a There is no atmosphere on the moon b class 11 physics CBSE

State Grahams law of diffusion Write the mathematical class 11 chemistry CBSE

Explain borax bead test class 11 chemistry CBSE
