
A bullet moving with velocity collides against a wall, consequently half of its kinetic energy is converted to heat. If the whole heat is acquired by the bullet then the rise in temperature will be:
Answer
496.8k+ views
Hint: Moving particles lose energy mostly through friction so that their kinetic energies eventually get transferred to heat energy.
First, one should know about the kinetic energy expression.
Then here is the question, it is mentioned that half of the kinetic energy will be converted to heat energy
Hence after writing the kinetic energy expression just do half of the energy that will be converted to heat.
After that use the formula for heat absorbed by a body in terms of specific heat and change in temperature and then finally equate that with the previously found heat energy absorbed by the bullet.
Formula used:
Kinetic energy = $0.5m{v^2}$
Heat absorbed = \[ms({t_2} - {t_1})\]
Complete step-by-step solution:
For a bullet with mass=\[m\] and velocity=\[v\] ;
the kinetic energy of bullet= = $0.5m{v^2}$
Half of the kinetic energy is converted to Heat energy
So, heat absorbed by bullet = $\dfrac{{0.5m{v^2}}}{2}$
Therefore, heat absorbed by bullet = $0.25m{v^2}$
Now, we will use the expression for heat absorbed in terms of specific heat and change in temperature
Heat absorbed = \[ms({t_2} - {t_1})\]; where s= specific heat and \[({t_2} - {t_1})\]= change in temperature
Accordingly now,
$0.25m{v^2} = ms({t_2} - {t_1})$
Therefore, from the above equation \[({t_2} - {t_1}) = \dfrac{{{v^2}}}{{4s}}\] is the temperature rise.
Hence option A is correct.
Note: When the bullet hits the target then both the bullet and the target get deformed and hence the Kinetic energy of the bullet gets converted to heat energy. When we heat a substance past its melting point, whatever energy we add to it, goes into melting another portion of the mass hence the concept of latent heat is useful in solving such problems. We can define the Heat capacity of a substance as the heat absorbed by the substance for change in temperature by one degree. Specific heat capacity is defined as heat absorbed per unit gram of a substance to result in a change of temperature by one degree.
First, one should know about the kinetic energy expression.
Then here is the question, it is mentioned that half of the kinetic energy will be converted to heat energy
Hence after writing the kinetic energy expression just do half of the energy that will be converted to heat.
After that use the formula for heat absorbed by a body in terms of specific heat and change in temperature and then finally equate that with the previously found heat energy absorbed by the bullet.
Formula used:
Kinetic energy = $0.5m{v^2}$
Heat absorbed = \[ms({t_2} - {t_1})\]
Complete step-by-step solution:
For a bullet with mass=\[m\] and velocity=\[v\] ;
the kinetic energy of bullet= = $0.5m{v^2}$
Half of the kinetic energy is converted to Heat energy
So, heat absorbed by bullet = $\dfrac{{0.5m{v^2}}}{2}$
Therefore, heat absorbed by bullet = $0.25m{v^2}$
Now, we will use the expression for heat absorbed in terms of specific heat and change in temperature
Heat absorbed = \[ms({t_2} - {t_1})\]; where s= specific heat and \[({t_2} - {t_1})\]= change in temperature
Accordingly now,
$0.25m{v^2} = ms({t_2} - {t_1})$
Therefore, from the above equation \[({t_2} - {t_1}) = \dfrac{{{v^2}}}{{4s}}\] is the temperature rise.
Hence option A is correct.
Note: When the bullet hits the target then both the bullet and the target get deformed and hence the Kinetic energy of the bullet gets converted to heat energy. When we heat a substance past its melting point, whatever energy we add to it, goes into melting another portion of the mass hence the concept of latent heat is useful in solving such problems. We can define the Heat capacity of a substance as the heat absorbed by the substance for change in temperature by one degree. Specific heat capacity is defined as heat absorbed per unit gram of a substance to result in a change of temperature by one degree.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

