
A bullet fired into a target loses half of its velocity after penetrating 15 cm. How much further will it penetrate before coming to rest?
Answer
483.9k+ views
Hint: In this question we will use the equation of motion, which gives us relation between final velocity, initial velocity, acceleration and distance. Now, by substituting and solving the equation, we will get the required result. Further, we will discuss the basics of equations of motion.
Formula used:
${v^2} = {u^2} + 2as$
Complete step by step solution:
As we know, we have three equations of motion. So, by applying the equation of motion for the initial velocity of bullet, we get:
${v^2} = {u^2} + 2as$
Now, solving the above equation for acceleration a, we get:
$a = - \dfrac{{{u^2}}}{{40}}$
As we know, we have three equations of motion. So, by applying the equation of motion for bullet after penetrating 15cm, we get:
${v^2} = {u^2} + 2as$
Since, u=0, where the bullet is at rest
$v = \dfrac{u}{2}$
Now, applying these values in the equation of motion, we get:
${v^2} = {u^2} + 2as$
$\eqalign{& \Rightarrow \dfrac{{{u^2}}}{{20}}s = \dfrac{{{u^2}}}{4} \cr
& \therefore s = 5cm \cr} $
Therefore, we get the required result that gives us the distance travelled by the bullet further before coming to rest.
Additional information:
As we know that the equations of motion are equations which describe the behavior of a physical system in terms of its motion as a function of time. Further we can say that these equations of motion describe the behavior of a physical system as a set of mathematical functions in terms of dynamic variables. Here, dynamic variables are said to be normally spatial coordinates and time is used, but others are also possible, like momentum components and time.
Now, if we go in history, these equations of motion were discovered by Galileo Galilee but he could not manage to prove it practically that his equations were right or not. Later, Sir Isaac Newton proved these three equations of motion practically and also graphically. So, that is the reason now they are often called Newton’s three equations of motion. These equations tell us about the acceleration, displacement, time, final velocity of an object, initial velocity of an object.
Note:
Here we should remember that the three different equations of motion are used in finding different physical properties of a particle under motion. We should also observe that these equations are only applicable to the classical system not in the quantum system.
Formula used:
${v^2} = {u^2} + 2as$
Complete step by step solution:
As we know, we have three equations of motion. So, by applying the equation of motion for the initial velocity of bullet, we get:
${v^2} = {u^2} + 2as$
Now, solving the above equation for acceleration a, we get:
$a = - \dfrac{{{u^2}}}{{40}}$
As we know, we have three equations of motion. So, by applying the equation of motion for bullet after penetrating 15cm, we get:
${v^2} = {u^2} + 2as$
Since, u=0, where the bullet is at rest
$v = \dfrac{u}{2}$
Now, applying these values in the equation of motion, we get:
${v^2} = {u^2} + 2as$
$\eqalign{& \Rightarrow \dfrac{{{u^2}}}{{20}}s = \dfrac{{{u^2}}}{4} \cr
& \therefore s = 5cm \cr} $
Therefore, we get the required result that gives us the distance travelled by the bullet further before coming to rest.
Additional information:
As we know that the equations of motion are equations which describe the behavior of a physical system in terms of its motion as a function of time. Further we can say that these equations of motion describe the behavior of a physical system as a set of mathematical functions in terms of dynamic variables. Here, dynamic variables are said to be normally spatial coordinates and time is used, but others are also possible, like momentum components and time.
Now, if we go in history, these equations of motion were discovered by Galileo Galilee but he could not manage to prove it practically that his equations were right or not. Later, Sir Isaac Newton proved these three equations of motion practically and also graphically. So, that is the reason now they are often called Newton’s three equations of motion. These equations tell us about the acceleration, displacement, time, final velocity of an object, initial velocity of an object.
Note:
Here we should remember that the three different equations of motion are used in finding different physical properties of a particle under motion. We should also observe that these equations are only applicable to the classical system not in the quantum system.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Earth rotates from West to east ATrue BFalse class 6 social science CBSE

The easternmost longitude of India is A 97circ 25E class 6 social science CBSE

Write the given sentence in the passive voice Ann cant class 6 CBSE

Convert 1 foot into meters A030 meter B03048 meter-class-6-maths-CBSE

What is the LCM of 30 and 40 class 6 maths CBSE

Trending doubts
Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

What is the difference between superposition and e class 11 physics CBSE

State and prove Bernoullis theorem class 11 physics CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
