
A body starts from rest and travels a distance S with uniform acceleration, then moves uniformly a distance 2S and finally comes to rest after moving further 5S under uniform retardation. The ratio of the average velocity to maximum velocity is
(a) 2/5
(b) 3/5
(c) 4/7
(d) 5/7
Answer
577.5k+ views
Hint: Use the concept of Motion In A Straight Line. Area of triangle= $\dfrac{1}{2}\times{base}\times{height}$ and Area of rectangle = ${base}\times{height}$.
Complete step by step solution:
Area of the (V–t) curve represents displacement.
$
S = \dfrac{1}{2}{v_{\max }}{t_1} \Rightarrow {t_1} = \dfrac{{2S}}{{{v_{\max }}}} \\
2S = \dfrac{1}{2}{v_{\max }}{t_2} \Rightarrow {t_2} = \dfrac{{2S}}{{{v_{\max }}}} \\
5S = \dfrac{1}{2}{v_{\max }}{t_2} \Rightarrow {t_3} = \dfrac{{10S}}{{{v_{\max }}}} \\
$
${V_{avg}} = \dfrac{{{\text{Total displacement}}}}{{{\text{Total time}}}}$$\dfrac{{S + 2S + 5S}}{{\dfrac{{2S}}{{{v_{\max }}}} + \dfrac{{2S}}{{{v_{\max }}}} + \dfrac{{10S}}{{{v_{\max }}}}}} = \dfrac{{8S}}{{\left( {\dfrac{{14S}}{{{v_{\max }}}}} \right)}} = {v_{\max }}\dfrac{4}{7}$
The ratio of the average velocity to maximum velocity= \[\dfrac{{{v_{avg}}}}{{{v_{\max }}}} = \dfrac{{{v_{\max }}\dfrac{4}{7}}}{{{v_{\max }}}} = \dfrac{4}{7}\]
Correct Answer: (c) 4/7
Note: Alternative Method-
\[\dfrac{{{v_{avg}}}}{{{v_{\max }}}} = \dfrac{{Total{\text{ }}displacement}}{{2({\text{Total displacement during acceleration and retardation) + (Displacement During uniform velocity)}}}}\]
$\therefore \dfrac{{{v_{avg}}}}{{{v_{\max }}}} = \dfrac{{8S}}{{2(S + 5S) + 2S}} = \dfrac{8}{{14}} = \dfrac{4}{7}$
Complete step by step solution:
Area of the (V–t) curve represents displacement.
$
S = \dfrac{1}{2}{v_{\max }}{t_1} \Rightarrow {t_1} = \dfrac{{2S}}{{{v_{\max }}}} \\
2S = \dfrac{1}{2}{v_{\max }}{t_2} \Rightarrow {t_2} = \dfrac{{2S}}{{{v_{\max }}}} \\
5S = \dfrac{1}{2}{v_{\max }}{t_2} \Rightarrow {t_3} = \dfrac{{10S}}{{{v_{\max }}}} \\
$
${V_{avg}} = \dfrac{{{\text{Total displacement}}}}{{{\text{Total time}}}}$$\dfrac{{S + 2S + 5S}}{{\dfrac{{2S}}{{{v_{\max }}}} + \dfrac{{2S}}{{{v_{\max }}}} + \dfrac{{10S}}{{{v_{\max }}}}}} = \dfrac{{8S}}{{\left( {\dfrac{{14S}}{{{v_{\max }}}}} \right)}} = {v_{\max }}\dfrac{4}{7}$
The ratio of the average velocity to maximum velocity= \[\dfrac{{{v_{avg}}}}{{{v_{\max }}}} = \dfrac{{{v_{\max }}\dfrac{4}{7}}}{{{v_{\max }}}} = \dfrac{4}{7}\]
Correct Answer: (c) 4/7
Note: Alternative Method-
\[\dfrac{{{v_{avg}}}}{{{v_{\max }}}} = \dfrac{{Total{\text{ }}displacement}}{{2({\text{Total displacement during acceleration and retardation) + (Displacement During uniform velocity)}}}}\]
$\therefore \dfrac{{{v_{avg}}}}{{{v_{\max }}}} = \dfrac{{8S}}{{2(S + 5S) + 2S}} = \dfrac{8}{{14}} = \dfrac{4}{7}$
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Explain zero factorial class 11 maths CBSE

Why is steel more elastic than rubber class 11 physics CBSE

State the laws of reflection of light

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

