Answer
Verified
390.6k+ views
Hint: In order to find speed of the body at midpoint C we will use the Newton’s equation of motion which are ${v^2} - {u^2} = 2aS$ where $v$ is the final velocity , $u$ is the initial velocity and $a$ is the acceleration of the body in covering a distance of $S$.
Complete answer:
It’s given that C is the midpoint Of AB so, let
$AC = CB = x$ And $AB = 2x$
Let uniform acceleration of the body is $a$ and while going from point A to point B
Initial velocity is $u$
Final velocity is $v$
Distance is $2x$
Using, ${v^2} - {u^2} = 2aS$
We get, ${v^2} - {u^2} = 4ax \to (i)$
Now, suppose the velocity of the body at point C is ${V_C}$ then while going from point A to point C:
Initial velocity is $u$
Final velocity is ${V_C}$
Distance is $x$
Using ${v^2} - {u^2} = 2aS$ we get,
${V_C}^2 - {u^2} = 2ax$
From equation $(i)$ put $ax = \dfrac{{{v^2} - {u^2}}}{4}$ in ${V_C}^2 - {u^2} = 2ax$
We get,
${V_C}^2 - {u^2} = \dfrac{{{v^2} - {u^2}}}{2}$
On rearranging terms we get,
${V_C}^2 = \dfrac{{{v^2} + {u^2}}}{2}$
${V_C} = \sqrt {\dfrac{{{v^2} + {u^2}}}{2}} $
Hence, the velocity of the body at midpoint of AB at C is ${V_C} = \sqrt {\dfrac{{{v^2} + {u^2}}}{2}} $
Note: It should be remembered that, acceleration is uniformly constant so at any point of journey its value and direction will remain same and other two equations of motion by newton is written as $v = u + at$ and last one is $S = ut + \dfrac{1}{2}a{t^2}$ , these three equations of motion almost describe whole Kinematics.
Complete answer:
It’s given that C is the midpoint Of AB so, let
$AC = CB = x$ And $AB = 2x$
Let uniform acceleration of the body is $a$ and while going from point A to point B
Initial velocity is $u$
Final velocity is $v$
Distance is $2x$
Using, ${v^2} - {u^2} = 2aS$
We get, ${v^2} - {u^2} = 4ax \to (i)$
Now, suppose the velocity of the body at point C is ${V_C}$ then while going from point A to point C:
Initial velocity is $u$
Final velocity is ${V_C}$
Distance is $x$
Using ${v^2} - {u^2} = 2aS$ we get,
${V_C}^2 - {u^2} = 2ax$
From equation $(i)$ put $ax = \dfrac{{{v^2} - {u^2}}}{4}$ in ${V_C}^2 - {u^2} = 2ax$
We get,
${V_C}^2 - {u^2} = \dfrac{{{v^2} - {u^2}}}{2}$
On rearranging terms we get,
${V_C}^2 = \dfrac{{{v^2} + {u^2}}}{2}$
${V_C} = \sqrt {\dfrac{{{v^2} + {u^2}}}{2}} $
Hence, the velocity of the body at midpoint of AB at C is ${V_C} = \sqrt {\dfrac{{{v^2} + {u^2}}}{2}} $
Note: It should be remembered that, acceleration is uniformly constant so at any point of journey its value and direction will remain same and other two equations of motion by newton is written as $v = u + at$ and last one is $S = ut + \dfrac{1}{2}a{t^2}$ , these three equations of motion almost describe whole Kinematics.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE