A body is moving with a constant acceleration from point A to point B in a straight line. C is the mid-point of AB. If u and v are the speeds of the body at points A and B respectively then what is the speed of the body at mid-point C ?
Answer
278.4k+ views
Hint: In order to find speed of the body at midpoint C we will use the Newton’s equation of motion which are ${v^2} - {u^2} = 2aS$ where $v$ is the final velocity , $u$ is the initial velocity and $a$ is the acceleration of the body in covering a distance of $S$.
Complete answer:
It’s given that C is the midpoint Of AB so, let
$AC = CB = x$ And $AB = 2x$
Let uniform acceleration of the body is $a$ and while going from point A to point B
Initial velocity is $u$
Final velocity is $v$
Distance is $2x$
Using, ${v^2} - {u^2} = 2aS$
We get, ${v^2} - {u^2} = 4ax \to (i)$
Now, suppose the velocity of the body at point C is ${V_C}$ then while going from point A to point C:
Initial velocity is $u$
Final velocity is ${V_C}$
Distance is $x$
Using ${v^2} - {u^2} = 2aS$ we get,
${V_C}^2 - {u^2} = 2ax$
From equation $(i)$ put $ax = \dfrac{{{v^2} - {u^2}}}{4}$ in ${V_C}^2 - {u^2} = 2ax$
We get,
${V_C}^2 - {u^2} = \dfrac{{{v^2} - {u^2}}}{2}$
On rearranging terms we get,
${V_C}^2 = \dfrac{{{v^2} + {u^2}}}{2}$
${V_C} = \sqrt {\dfrac{{{v^2} + {u^2}}}{2}} $
Hence, the velocity of the body at midpoint of AB at C is ${V_C} = \sqrt {\dfrac{{{v^2} + {u^2}}}{2}} $
Note: It should be remembered that, acceleration is uniformly constant so at any point of journey its value and direction will remain same and other two equations of motion by newton is written as $v = u + at$ and last one is $S = ut + \dfrac{1}{2}a{t^2}$ , these three equations of motion almost describe whole Kinematics.
Complete answer:
It’s given that C is the midpoint Of AB so, let
$AC = CB = x$ And $AB = 2x$
Let uniform acceleration of the body is $a$ and while going from point A to point B
Initial velocity is $u$
Final velocity is $v$
Distance is $2x$
Using, ${v^2} - {u^2} = 2aS$
We get, ${v^2} - {u^2} = 4ax \to (i)$
Now, suppose the velocity of the body at point C is ${V_C}$ then while going from point A to point C:
Initial velocity is $u$
Final velocity is ${V_C}$
Distance is $x$
Using ${v^2} - {u^2} = 2aS$ we get,
${V_C}^2 - {u^2} = 2ax$
From equation $(i)$ put $ax = \dfrac{{{v^2} - {u^2}}}{4}$ in ${V_C}^2 - {u^2} = 2ax$
We get,
${V_C}^2 - {u^2} = \dfrac{{{v^2} - {u^2}}}{2}$
On rearranging terms we get,
${V_C}^2 = \dfrac{{{v^2} + {u^2}}}{2}$
${V_C} = \sqrt {\dfrac{{{v^2} + {u^2}}}{2}} $
Hence, the velocity of the body at midpoint of AB at C is ${V_C} = \sqrt {\dfrac{{{v^2} + {u^2}}}{2}} $
Note: It should be remembered that, acceleration is uniformly constant so at any point of journey its value and direction will remain same and other two equations of motion by newton is written as $v = u + at$ and last one is $S = ut + \dfrac{1}{2}a{t^2}$ , these three equations of motion almost describe whole Kinematics.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Define absolute refractive index of a medium

Which of the following would not be a valid reason class 11 biology CBSE

Why should electric field lines never cross each other class 12 physics CBSE

An electrostatic field line is a continuous curve That class 12 physics CBSE

What is meant by monosporic development of female class 11 biology CBSE

Trending doubts
Which country launched the first satellite in space class 11 physics CBSE

Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

What is the past tense of read class 10 english CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

What is pollution? How many types of pollution? Define it

Give 10 examples for herbs , shrubs , climbers , creepers

Write a letter to the principal requesting him to grant class 10 english CBSE
