
A binary sequence is an array of 0’s and 1’s. The number of n-digit binary sequences which contain even number 0’s is:
A. ${2^n} - 1$
B. ${2^n}$
C. ${2^{n - 1}} - 1$
D. ${2^n} + 1$
Answer
569.1k+ views
Hint: The binomial theorem formulas or the binomial identity are used here in order to solve the given problem. In the given binary sequence of 0’s and 1’s we have to find out the number of n- digit binary sequences which should contain an even number of 0’s.
Complete step-by-step solution:
Here the used binomial identity is:
\[ \Rightarrow {\left( {1 + x} \right)^n} = {}^n{c_o}{x^0} + {}^n{c_1}{x^1} + {}^n{c_2}{x^2} + \cdot \cdot \cdot + {}^n{c_{n - 1}}{x^{n - 1}} + {}^n{c_n}{x^n}\]
Here in the problem, we have to find out the number of n-digit binary sequences which contain even number of 0’s, which is given by:
The required number of ways to get the even no. of zeroes i.e, $\{ 0,2,4,....\} $, which is given by:
Required no. of ways $ = {}^n{c_0} + {}^n{c_2} + {}^n{c_4} + \cdot \cdot \cdot \cdot $
To calculate ${}^n{c_0} + {}^n{c_2} + {}^n{c_4} + \cdot \cdot \cdot \cdot $, we have to find out from the binomial identity ${\left( {1 + x} \right)^n}$given below:
\[ \Rightarrow {\left( {1 + x} \right)^n} = {}^n{c_o}{x^0} + {}^n{c_1}{x^1} + {}^n{c_2}{x^2} + \cdot \cdot \cdot + {}^n{c_{n - 1}}{x^{n - 1}} + {}^n{c_n}{x^n}\]
Substitute $x = 1$ in the above binomial identity, which gives:
\[ \Rightarrow {\left( {1 + 1} \right)^n} = {}^n{c_o}{1^0} + {}^n{c_1}{1^1} + {}^n{c_2}{1^2} + \cdot \cdot \cdot + {}^n{c_{n - 1}}{1^{n - 1}} + {}^n{c_n}{1^n}\]
\[ \Rightarrow {\left( 2 \right)^n} = {}^n{c_o} + {}^n{c_1} + {}^n{c_2} + \cdot \cdot \cdot + {}^n{c_{n - 1}} + {}^n{c_n}\]
Re-writing the terms and on further simplifying:
$\therefore {}^n{c_o} + {}^n{c_1} + {}^n{c_2} + \cdot \cdot \cdot \cdot \cdot = {2^n}$
Now substitute $x = - 1$in the binomial identity, which gives:
\[ \Rightarrow {\left( {1 - 1} \right)^n} = {}^n{c_o}{( - 1)^0} + {}^n{c_1}{( - 1)^1} + {}^n{c_2}{( - 1)^2} + \cdot \cdot \cdot + {}^n{c_{n - 1}}{( - 1)^{n - 1}} + {}^n{c_n}{( - 1)^n}\]\[ \Rightarrow {\left( 0 \right)^n} = {}^n{c_o} - {}^n{c_1} + {}^n{c_2} + \cdot \cdot \cdot + {}^n{c_{n - 1}}{( - 1)^{n - 1}} + {}^n{c_n}{( - 1)^n}\]
Re-writing the terms which gives:
\[\therefore {}^n{c_o} - {}^n{c_1} + {}^n{c_2} - {}^n{c_3} \cdot \cdot \cdot \cdot \cdot = 0\]
Adding the equations :
${}^n{c_o} + {}^n{c_1} + {}^n{c_2} + \cdot \cdot \cdot \cdot \cdot = {2^n}$ and \[{}^n{c_o} - {}^n{c_1} + {}^n{c_2} - {}^n{c_3} \cdot \cdot \cdot \cdot \cdot = 0\], which gives:
${}^n{c_o} + {}^n{c_1} + {}^n{c_2} + {}^n{c_3} \cdot \cdot \cdot \cdot = {2^n}$
\[{}^n{c_o} - {}^n{c_1} + {}^n{c_2} - {}^n{c_3} \cdot \cdot \cdot \cdot \cdot = 0\]
\[2{}^n{c_o} + 0 + 2{}^n{c_2} + 0 \cdot \cdot \cdot \cdot \cdot = {2^n} + 0\]
Now the addition of the two equations gives:
$ \Rightarrow 2{}^n{c_0} + 2{}^n{c_2} + 2{}^n{c_4} + \cdot \cdot \cdot \cdot \cdot \cdot = {2^n}$
$ \Rightarrow 2[{}^n{c_0} + {}^n{c_2} + {}^n{c_4} + \cdot \cdot \cdot \cdot \cdot \cdot ] = {2^n}$
$ \Rightarrow [{}^n{c_0} + {}^n{c_2} + {}^n{c_4} + \cdot \cdot \cdot \cdot \cdot \cdot ] = \dfrac{{{2^n}}}{2}$
$ \Rightarrow [{}^n{c_0} + {}^n{c_2} + {}^n{c_4} + \cdot \cdot \cdot \cdot \cdot \cdot ] = {2^{n - 1}}$
\[\therefore {}^n{c_0} + {}^n{c_2} + {}^n{c_4} + \cdot \cdot \cdot \cdot \cdot \cdot = {2^{n - 1}}\]
The number of n-digit binary sequences which contain even number 0’s is \[{2^{n - 1}}\].
Note: Here in this problem was asked to find the even no. of zeroes i.e, $\{ 0,2,4,....\} $, which is given by, ${}^n{c_0} + {}^n{c_2} + {}^n{c_4} + \cdot \cdot \cdot \cdot $, if asked to find the odd no. of zeros then $\left\{ {1,3,5,.....} \right\}$ which is given by ${}^n{c_1} + {}^n{c_3} + {}^n{c_5} + \cdot \cdot \cdot \cdot $, which can be obtained by subtracting the equations this time.
Complete step-by-step solution:
Here the used binomial identity is:
\[ \Rightarrow {\left( {1 + x} \right)^n} = {}^n{c_o}{x^0} + {}^n{c_1}{x^1} + {}^n{c_2}{x^2} + \cdot \cdot \cdot + {}^n{c_{n - 1}}{x^{n - 1}} + {}^n{c_n}{x^n}\]
Here in the problem, we have to find out the number of n-digit binary sequences which contain even number of 0’s, which is given by:
The required number of ways to get the even no. of zeroes i.e, $\{ 0,2,4,....\} $, which is given by:
Required no. of ways $ = {}^n{c_0} + {}^n{c_2} + {}^n{c_4} + \cdot \cdot \cdot \cdot $
To calculate ${}^n{c_0} + {}^n{c_2} + {}^n{c_4} + \cdot \cdot \cdot \cdot $, we have to find out from the binomial identity ${\left( {1 + x} \right)^n}$given below:
\[ \Rightarrow {\left( {1 + x} \right)^n} = {}^n{c_o}{x^0} + {}^n{c_1}{x^1} + {}^n{c_2}{x^2} + \cdot \cdot \cdot + {}^n{c_{n - 1}}{x^{n - 1}} + {}^n{c_n}{x^n}\]
Substitute $x = 1$ in the above binomial identity, which gives:
\[ \Rightarrow {\left( {1 + 1} \right)^n} = {}^n{c_o}{1^0} + {}^n{c_1}{1^1} + {}^n{c_2}{1^2} + \cdot \cdot \cdot + {}^n{c_{n - 1}}{1^{n - 1}} + {}^n{c_n}{1^n}\]
\[ \Rightarrow {\left( 2 \right)^n} = {}^n{c_o} + {}^n{c_1} + {}^n{c_2} + \cdot \cdot \cdot + {}^n{c_{n - 1}} + {}^n{c_n}\]
Re-writing the terms and on further simplifying:
$\therefore {}^n{c_o} + {}^n{c_1} + {}^n{c_2} + \cdot \cdot \cdot \cdot \cdot = {2^n}$
Now substitute $x = - 1$in the binomial identity, which gives:
\[ \Rightarrow {\left( {1 - 1} \right)^n} = {}^n{c_o}{( - 1)^0} + {}^n{c_1}{( - 1)^1} + {}^n{c_2}{( - 1)^2} + \cdot \cdot \cdot + {}^n{c_{n - 1}}{( - 1)^{n - 1}} + {}^n{c_n}{( - 1)^n}\]\[ \Rightarrow {\left( 0 \right)^n} = {}^n{c_o} - {}^n{c_1} + {}^n{c_2} + \cdot \cdot \cdot + {}^n{c_{n - 1}}{( - 1)^{n - 1}} + {}^n{c_n}{( - 1)^n}\]
Re-writing the terms which gives:
\[\therefore {}^n{c_o} - {}^n{c_1} + {}^n{c_2} - {}^n{c_3} \cdot \cdot \cdot \cdot \cdot = 0\]
Adding the equations :
${}^n{c_o} + {}^n{c_1} + {}^n{c_2} + \cdot \cdot \cdot \cdot \cdot = {2^n}$ and \[{}^n{c_o} - {}^n{c_1} + {}^n{c_2} - {}^n{c_3} \cdot \cdot \cdot \cdot \cdot = 0\], which gives:
${}^n{c_o} + {}^n{c_1} + {}^n{c_2} + {}^n{c_3} \cdot \cdot \cdot \cdot = {2^n}$
\[{}^n{c_o} - {}^n{c_1} + {}^n{c_2} - {}^n{c_3} \cdot \cdot \cdot \cdot \cdot = 0\]
\[2{}^n{c_o} + 0 + 2{}^n{c_2} + 0 \cdot \cdot \cdot \cdot \cdot = {2^n} + 0\]
Now the addition of the two equations gives:
$ \Rightarrow 2{}^n{c_0} + 2{}^n{c_2} + 2{}^n{c_4} + \cdot \cdot \cdot \cdot \cdot \cdot = {2^n}$
$ \Rightarrow 2[{}^n{c_0} + {}^n{c_2} + {}^n{c_4} + \cdot \cdot \cdot \cdot \cdot \cdot ] = {2^n}$
$ \Rightarrow [{}^n{c_0} + {}^n{c_2} + {}^n{c_4} + \cdot \cdot \cdot \cdot \cdot \cdot ] = \dfrac{{{2^n}}}{2}$
$ \Rightarrow [{}^n{c_0} + {}^n{c_2} + {}^n{c_4} + \cdot \cdot \cdot \cdot \cdot \cdot ] = {2^{n - 1}}$
\[\therefore {}^n{c_0} + {}^n{c_2} + {}^n{c_4} + \cdot \cdot \cdot \cdot \cdot \cdot = {2^{n - 1}}\]
The number of n-digit binary sequences which contain even number 0’s is \[{2^{n - 1}}\].
Note: Here in this problem was asked to find the even no. of zeroes i.e, $\{ 0,2,4,....\} $, which is given by, ${}^n{c_0} + {}^n{c_2} + {}^n{c_4} + \cdot \cdot \cdot \cdot $, if asked to find the odd no. of zeros then $\left\{ {1,3,5,.....} \right\}$ which is given by ${}^n{c_1} + {}^n{c_3} + {}^n{c_5} + \cdot \cdot \cdot \cdot $, which can be obtained by subtracting the equations this time.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

