
A binary sequence is an array of 0’s and 1’s. The number of n-digit binary sequences which contain even number 0’s is:
A. ${2^n} - 1$
B. ${2^n}$
C. ${2^{n - 1}} - 1$
D. ${2^n} + 1$
Answer
552.3k+ views
Hint: The binomial theorem formulas or the binomial identity are used here in order to solve the given problem. In the given binary sequence of 0’s and 1’s we have to find out the number of n- digit binary sequences which should contain an even number of 0’s.
Complete step-by-step solution:
Here the used binomial identity is:
\[ \Rightarrow {\left( {1 + x} \right)^n} = {}^n{c_o}{x^0} + {}^n{c_1}{x^1} + {}^n{c_2}{x^2} + \cdot \cdot \cdot + {}^n{c_{n - 1}}{x^{n - 1}} + {}^n{c_n}{x^n}\]
Here in the problem, we have to find out the number of n-digit binary sequences which contain even number of 0’s, which is given by:
The required number of ways to get the even no. of zeroes i.e, $\{ 0,2,4,....\} $, which is given by:
Required no. of ways $ = {}^n{c_0} + {}^n{c_2} + {}^n{c_4} + \cdot \cdot \cdot \cdot $
To calculate ${}^n{c_0} + {}^n{c_2} + {}^n{c_4} + \cdot \cdot \cdot \cdot $, we have to find out from the binomial identity ${\left( {1 + x} \right)^n}$given below:
\[ \Rightarrow {\left( {1 + x} \right)^n} = {}^n{c_o}{x^0} + {}^n{c_1}{x^1} + {}^n{c_2}{x^2} + \cdot \cdot \cdot + {}^n{c_{n - 1}}{x^{n - 1}} + {}^n{c_n}{x^n}\]
Substitute $x = 1$ in the above binomial identity, which gives:
\[ \Rightarrow {\left( {1 + 1} \right)^n} = {}^n{c_o}{1^0} + {}^n{c_1}{1^1} + {}^n{c_2}{1^2} + \cdot \cdot \cdot + {}^n{c_{n - 1}}{1^{n - 1}} + {}^n{c_n}{1^n}\]
\[ \Rightarrow {\left( 2 \right)^n} = {}^n{c_o} + {}^n{c_1} + {}^n{c_2} + \cdot \cdot \cdot + {}^n{c_{n - 1}} + {}^n{c_n}\]
Re-writing the terms and on further simplifying:
$\therefore {}^n{c_o} + {}^n{c_1} + {}^n{c_2} + \cdot \cdot \cdot \cdot \cdot = {2^n}$
Now substitute $x = - 1$in the binomial identity, which gives:
\[ \Rightarrow {\left( {1 - 1} \right)^n} = {}^n{c_o}{( - 1)^0} + {}^n{c_1}{( - 1)^1} + {}^n{c_2}{( - 1)^2} + \cdot \cdot \cdot + {}^n{c_{n - 1}}{( - 1)^{n - 1}} + {}^n{c_n}{( - 1)^n}\]\[ \Rightarrow {\left( 0 \right)^n} = {}^n{c_o} - {}^n{c_1} + {}^n{c_2} + \cdot \cdot \cdot + {}^n{c_{n - 1}}{( - 1)^{n - 1}} + {}^n{c_n}{( - 1)^n}\]
Re-writing the terms which gives:
\[\therefore {}^n{c_o} - {}^n{c_1} + {}^n{c_2} - {}^n{c_3} \cdot \cdot \cdot \cdot \cdot = 0\]
Adding the equations :
${}^n{c_o} + {}^n{c_1} + {}^n{c_2} + \cdot \cdot \cdot \cdot \cdot = {2^n}$ and \[{}^n{c_o} - {}^n{c_1} + {}^n{c_2} - {}^n{c_3} \cdot \cdot \cdot \cdot \cdot = 0\], which gives:
${}^n{c_o} + {}^n{c_1} + {}^n{c_2} + {}^n{c_3} \cdot \cdot \cdot \cdot = {2^n}$
\[{}^n{c_o} - {}^n{c_1} + {}^n{c_2} - {}^n{c_3} \cdot \cdot \cdot \cdot \cdot = 0\]
\[2{}^n{c_o} + 0 + 2{}^n{c_2} + 0 \cdot \cdot \cdot \cdot \cdot = {2^n} + 0\]
Now the addition of the two equations gives:
$ \Rightarrow 2{}^n{c_0} + 2{}^n{c_2} + 2{}^n{c_4} + \cdot \cdot \cdot \cdot \cdot \cdot = {2^n}$
$ \Rightarrow 2[{}^n{c_0} + {}^n{c_2} + {}^n{c_4} + \cdot \cdot \cdot \cdot \cdot \cdot ] = {2^n}$
$ \Rightarrow [{}^n{c_0} + {}^n{c_2} + {}^n{c_4} + \cdot \cdot \cdot \cdot \cdot \cdot ] = \dfrac{{{2^n}}}{2}$
$ \Rightarrow [{}^n{c_0} + {}^n{c_2} + {}^n{c_4} + \cdot \cdot \cdot \cdot \cdot \cdot ] = {2^{n - 1}}$
\[\therefore {}^n{c_0} + {}^n{c_2} + {}^n{c_4} + \cdot \cdot \cdot \cdot \cdot \cdot = {2^{n - 1}}\]
The number of n-digit binary sequences which contain even number 0’s is \[{2^{n - 1}}\].
Note: Here in this problem was asked to find the even no. of zeroes i.e, $\{ 0,2,4,....\} $, which is given by, ${}^n{c_0} + {}^n{c_2} + {}^n{c_4} + \cdot \cdot \cdot \cdot $, if asked to find the odd no. of zeros then $\left\{ {1,3,5,.....} \right\}$ which is given by ${}^n{c_1} + {}^n{c_3} + {}^n{c_5} + \cdot \cdot \cdot \cdot $, which can be obtained by subtracting the equations this time.
Complete step-by-step solution:
Here the used binomial identity is:
\[ \Rightarrow {\left( {1 + x} \right)^n} = {}^n{c_o}{x^0} + {}^n{c_1}{x^1} + {}^n{c_2}{x^2} + \cdot \cdot \cdot + {}^n{c_{n - 1}}{x^{n - 1}} + {}^n{c_n}{x^n}\]
Here in the problem, we have to find out the number of n-digit binary sequences which contain even number of 0’s, which is given by:
The required number of ways to get the even no. of zeroes i.e, $\{ 0,2,4,....\} $, which is given by:
Required no. of ways $ = {}^n{c_0} + {}^n{c_2} + {}^n{c_4} + \cdot \cdot \cdot \cdot $
To calculate ${}^n{c_0} + {}^n{c_2} + {}^n{c_4} + \cdot \cdot \cdot \cdot $, we have to find out from the binomial identity ${\left( {1 + x} \right)^n}$given below:
\[ \Rightarrow {\left( {1 + x} \right)^n} = {}^n{c_o}{x^0} + {}^n{c_1}{x^1} + {}^n{c_2}{x^2} + \cdot \cdot \cdot + {}^n{c_{n - 1}}{x^{n - 1}} + {}^n{c_n}{x^n}\]
Substitute $x = 1$ in the above binomial identity, which gives:
\[ \Rightarrow {\left( {1 + 1} \right)^n} = {}^n{c_o}{1^0} + {}^n{c_1}{1^1} + {}^n{c_2}{1^2} + \cdot \cdot \cdot + {}^n{c_{n - 1}}{1^{n - 1}} + {}^n{c_n}{1^n}\]
\[ \Rightarrow {\left( 2 \right)^n} = {}^n{c_o} + {}^n{c_1} + {}^n{c_2} + \cdot \cdot \cdot + {}^n{c_{n - 1}} + {}^n{c_n}\]
Re-writing the terms and on further simplifying:
$\therefore {}^n{c_o} + {}^n{c_1} + {}^n{c_2} + \cdot \cdot \cdot \cdot \cdot = {2^n}$
Now substitute $x = - 1$in the binomial identity, which gives:
\[ \Rightarrow {\left( {1 - 1} \right)^n} = {}^n{c_o}{( - 1)^0} + {}^n{c_1}{( - 1)^1} + {}^n{c_2}{( - 1)^2} + \cdot \cdot \cdot + {}^n{c_{n - 1}}{( - 1)^{n - 1}} + {}^n{c_n}{( - 1)^n}\]\[ \Rightarrow {\left( 0 \right)^n} = {}^n{c_o} - {}^n{c_1} + {}^n{c_2} + \cdot \cdot \cdot + {}^n{c_{n - 1}}{( - 1)^{n - 1}} + {}^n{c_n}{( - 1)^n}\]
Re-writing the terms which gives:
\[\therefore {}^n{c_o} - {}^n{c_1} + {}^n{c_2} - {}^n{c_3} \cdot \cdot \cdot \cdot \cdot = 0\]
Adding the equations :
${}^n{c_o} + {}^n{c_1} + {}^n{c_2} + \cdot \cdot \cdot \cdot \cdot = {2^n}$ and \[{}^n{c_o} - {}^n{c_1} + {}^n{c_2} - {}^n{c_3} \cdot \cdot \cdot \cdot \cdot = 0\], which gives:
${}^n{c_o} + {}^n{c_1} + {}^n{c_2} + {}^n{c_3} \cdot \cdot \cdot \cdot = {2^n}$
\[{}^n{c_o} - {}^n{c_1} + {}^n{c_2} - {}^n{c_3} \cdot \cdot \cdot \cdot \cdot = 0\]
\[2{}^n{c_o} + 0 + 2{}^n{c_2} + 0 \cdot \cdot \cdot \cdot \cdot = {2^n} + 0\]
Now the addition of the two equations gives:
$ \Rightarrow 2{}^n{c_0} + 2{}^n{c_2} + 2{}^n{c_4} + \cdot \cdot \cdot \cdot \cdot \cdot = {2^n}$
$ \Rightarrow 2[{}^n{c_0} + {}^n{c_2} + {}^n{c_4} + \cdot \cdot \cdot \cdot \cdot \cdot ] = {2^n}$
$ \Rightarrow [{}^n{c_0} + {}^n{c_2} + {}^n{c_4} + \cdot \cdot \cdot \cdot \cdot \cdot ] = \dfrac{{{2^n}}}{2}$
$ \Rightarrow [{}^n{c_0} + {}^n{c_2} + {}^n{c_4} + \cdot \cdot \cdot \cdot \cdot \cdot ] = {2^{n - 1}}$
\[\therefore {}^n{c_0} + {}^n{c_2} + {}^n{c_4} + \cdot \cdot \cdot \cdot \cdot \cdot = {2^{n - 1}}\]
The number of n-digit binary sequences which contain even number 0’s is \[{2^{n - 1}}\].
Note: Here in this problem was asked to find the even no. of zeroes i.e, $\{ 0,2,4,....\} $, which is given by, ${}^n{c_0} + {}^n{c_2} + {}^n{c_4} + \cdot \cdot \cdot \cdot $, if asked to find the odd no. of zeros then $\left\{ {1,3,5,.....} \right\}$ which is given by ${}^n{c_1} + {}^n{c_3} + {}^n{c_5} + \cdot \cdot \cdot \cdot $, which can be obtained by subtracting the equations this time.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

