
A bar magnet when placed at an angle of \[30^\circ \] to the direction of magnetic field of induction of \[5 \times {\text{ }}{10^{ - 5}}T\], experiences a moment of a couple \[2.5 \times {\text{ }}{10^{ - 6}}N - m\], If the length of the magnet is \[5cm\] its pole strength is
A.\[2 \times {\text{ }}{10^{ - 2}}Am\]
B.\[5 \times {\text{ }}{10^{ - 2}}Am\]
C.\[2Am\]
D.\[5Am\]
Answer
484.8k+ views
Hint: Torque is defined as a coupled force acting on a body that causes a body to rotate about its axis.
Example: While opening a lead we apply coupled force (parallel, equal but in opposite direction ) to rotate it about its center.
Pole strength is a scalar quantity and it is defined as the strength of a bar magnet and its ability to attract other magnetic material towards itself and magnetic moment of a bar magnet is directly proportional to pole strength of a magnet.
Formula Used:
The torque acting on a bar magnet, \[\tau {\text{ }} = {\text{ }}MB{\text{ }}sin{\text{ }}\theta \]
Pole strength of bar magnet, $m = \dfrac{M}{L}$
Complete answer:
Given that,
The angle of rotation, \[\theta {\text{ }} = {\text{ }}30^\circ \]
magnetic field of induction, \[B{\text{ }} = {\text{ }}5 \times {\text{ }}{10^{ - 5}}T\]
Torque, \[\tau {\text{ }} = {\text{ }}2.5 \times {\text{ }}{10^{ - 6}}N - m\]
Length of the magnet, \[L = 5cm = 0.05m\]
The net torque acting on a bar magnet is given as
\[\tau {\text{ }} = {\text{ }}MB{\text{ }}sin{\text{ }}\theta \]
Substituting the given values of τ, B, and θ we get
\[2.5 \times {\text{ }}{10^{ - 6}} = {\text{ }}M{\text{ }} \times {\text{ }}5 \times {\text{ }}{10^{ - 5}} \times {\text{ }}sin{\text{ }}30\]
$M = \dfrac{{2.5 \times {\text{}}{{10}^{ - 6}}}}{{sin30 \times 5 \times {\text{}}{{10}^{ - 5}}}}$
$M = \dfrac{{2.5 \times {\text{}}{{10}^{ - 6}}}}{{0.5 \times 5 \times {\text{}}{{10}^{ - 5}}}}$
\[\therefore M{\text{ }} = 0.1{\text{ }}A{\text{ }}{m^2}\]
Now the pole strength of a magnet is given as
\[M = mL\]
\[0.1{\text{ }} = m \times {\text{ }}0.05\]
$\therefore m = \dfrac{{0.1}}{{0.05}} = 2 \times {10^{ - 3}} = 2mA$
Option C is correct among all.
Note:
In physics, torque is considered as a rotational analog of force, and it is expressed as $\vec \tau = \vec r \times \vec F$.
Also, we must note that if we cut a bar magnet in half its pole strength will remain unaffected whereas its magnetic dipole moment will become half of its original intensity.
Example: While opening a lead we apply coupled force (parallel, equal but in opposite direction ) to rotate it about its center.
Pole strength is a scalar quantity and it is defined as the strength of a bar magnet and its ability to attract other magnetic material towards itself and magnetic moment of a bar magnet is directly proportional to pole strength of a magnet.
Formula Used:
The torque acting on a bar magnet, \[\tau {\text{ }} = {\text{ }}MB{\text{ }}sin{\text{ }}\theta \]
Pole strength of bar magnet, $m = \dfrac{M}{L}$
Complete answer:
Given that,
The angle of rotation, \[\theta {\text{ }} = {\text{ }}30^\circ \]
magnetic field of induction, \[B{\text{ }} = {\text{ }}5 \times {\text{ }}{10^{ - 5}}T\]
Torque, \[\tau {\text{ }} = {\text{ }}2.5 \times {\text{ }}{10^{ - 6}}N - m\]
Length of the magnet, \[L = 5cm = 0.05m\]
The net torque acting on a bar magnet is given as
\[\tau {\text{ }} = {\text{ }}MB{\text{ }}sin{\text{ }}\theta \]
Substituting the given values of τ, B, and θ we get
\[2.5 \times {\text{ }}{10^{ - 6}} = {\text{ }}M{\text{ }} \times {\text{ }}5 \times {\text{ }}{10^{ - 5}} \times {\text{ }}sin{\text{ }}30\]
$M = \dfrac{{2.5 \times {\text{}}{{10}^{ - 6}}}}{{sin30 \times 5 \times {\text{}}{{10}^{ - 5}}}}$
$M = \dfrac{{2.5 \times {\text{}}{{10}^{ - 6}}}}{{0.5 \times 5 \times {\text{}}{{10}^{ - 5}}}}$
\[\therefore M{\text{ }} = 0.1{\text{ }}A{\text{ }}{m^2}\]
Now the pole strength of a magnet is given as
\[M = mL\]
\[0.1{\text{ }} = m \times {\text{ }}0.05\]
$\therefore m = \dfrac{{0.1}}{{0.05}} = 2 \times {10^{ - 3}} = 2mA$
Option C is correct among all.
Note:
In physics, torque is considered as a rotational analog of force, and it is expressed as $\vec \tau = \vec r \times \vec F$.
Also, we must note that if we cut a bar magnet in half its pole strength will remain unaffected whereas its magnetic dipole moment will become half of its original intensity.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

