
A ball is bouncing down a flight of stairs. The coefficient of restitution is $e$. The height of each step is $d$ and the ball descends one step each bounce. After each bounce it rebounds to a height $h$ above the next lower step. The height is large compared with the width of the step so that the impacts are effectively head-on. Find the relationship between $h$ and $d$.
(A) $h = \dfrac{d}{{1 - {e^2}}}$
(B) $h = \dfrac{d}{{1 + {e^2}}}$
(C) $h = \dfrac{d}{{1 + {e^{}}}}$
(D) $h = \sqrt {\dfrac{d}{{1 - {e^2}}}} $
Answer
566.4k+ views
Hint
We are here asked to find the relationship between $h$ and $d$. Also we are given with the coefficient of restitution. Thus, it would be easier to go through the path of restitution analysis.
${v^2} - {u^2} = 2ah$
Where, $v$ is the final velocity of the particle, $u$ is the initial velocity of the particle, $a$ is the acceleration on it and $h$ is the height of the particle.
$e = \dfrac{{{v_2}}}{{{v_1}}}$
Where, $e$ is the coefficient of restitution, ${v_2}$ is the velocity of the particle after collision and ${v_1}$ is the velocity of the particle before collision.
Complete step by step answer
Here, For the first bounce of the ball on the top most step,
${v_1}^2 - {0^2} = 2ah$
We took ${u_1} = 0$ as the initial velocity of the ball was zero.
Thus, we get
$2ah = {v_1}^2 \cdot \cdot \cdot \cdot (1)$
Now, After the first bounce, the new height of the ball is $(h - d)$,
Thus, we get
$2a(h - d) = {v_2}^2 \cdot \cdot \cdot \cdot (2)$
Now,
Applying$\dfrac{{Equation(1)}}{{Equation(2)}}$, we get
$\dfrac{h}{{h - d}} = \dfrac{{{v_1}^2}}{{{v_2}^2}}$
After further evaluation, we get
$\dfrac{{{v_2}}}{{{v_1}}} = \sqrt {\dfrac{{h - d}}{h}} $
But,
$e = \dfrac{{{v_2}}}{{{v_1}}}$
Thus, equating both, we get
$e = \sqrt {\dfrac{{h - d}}{h}} $
Further, we get
${e^2} = \dfrac{{h - d}}{h} \Rightarrow h{e^2} = h - d \Rightarrow h = \dfrac{d}{{1 - {e^2}}}$
Hence, the correct option is (A).
Note
We have used the route of using the fundamental formula for coefficient of restitution as that allows us to directly relate all the given parameters. Moreover, in the given case it is given that the collision is head on which means completely elastic, but if the collision was inelastic, then the evaluation will be somewhat different.
We are here asked to find the relationship between $h$ and $d$. Also we are given with the coefficient of restitution. Thus, it would be easier to go through the path of restitution analysis.
${v^2} - {u^2} = 2ah$
Where, $v$ is the final velocity of the particle, $u$ is the initial velocity of the particle, $a$ is the acceleration on it and $h$ is the height of the particle.
$e = \dfrac{{{v_2}}}{{{v_1}}}$
Where, $e$ is the coefficient of restitution, ${v_2}$ is the velocity of the particle after collision and ${v_1}$ is the velocity of the particle before collision.
Complete step by step answer
Here, For the first bounce of the ball on the top most step,
${v_1}^2 - {0^2} = 2ah$
We took ${u_1} = 0$ as the initial velocity of the ball was zero.
Thus, we get
$2ah = {v_1}^2 \cdot \cdot \cdot \cdot (1)$
Now, After the first bounce, the new height of the ball is $(h - d)$,
Thus, we get
$2a(h - d) = {v_2}^2 \cdot \cdot \cdot \cdot (2)$
Now,
Applying$\dfrac{{Equation(1)}}{{Equation(2)}}$, we get
$\dfrac{h}{{h - d}} = \dfrac{{{v_1}^2}}{{{v_2}^2}}$
After further evaluation, we get
$\dfrac{{{v_2}}}{{{v_1}}} = \sqrt {\dfrac{{h - d}}{h}} $
But,
$e = \dfrac{{{v_2}}}{{{v_1}}}$
Thus, equating both, we get
$e = \sqrt {\dfrac{{h - d}}{h}} $
Further, we get
${e^2} = \dfrac{{h - d}}{h} \Rightarrow h{e^2} = h - d \Rightarrow h = \dfrac{d}{{1 - {e^2}}}$
Hence, the correct option is (A).
Note
We have used the route of using the fundamental formula for coefficient of restitution as that allows us to directly relate all the given parameters. Moreover, in the given case it is given that the collision is head on which means completely elastic, but if the collision was inelastic, then the evaluation will be somewhat different.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

