
A ball falls on an inclined plane of inclination from height h above the point of impact and makes a perfectly elastic collision, where will it hit the plane again?
Answer
571.8k+ views
Hint: We will form a correct diagram which can be done according to the information given and we will use the formulas of kinematics of displacement in vertical and horizontal directions. After that, we will find the length of the ball coming back again to the inclined plane.
Formula used:
${{v}_{\text{o}}}=\sqrt{2gh}$ where g is gravitational force, h is height, $Vertical\,height={{v}_{\text{o }\left( \text{vertical} \right)}}t+\dfrac{1}{2}\left( \text{ver}\text{.}\, \right)\text{acceleration}\left( {{t}^{2}} \right)$ , vertical height is 0, ${{v}_{\text{o }\left( vertical \right)}}={{v}_{\text{o}}}\cos \left( \theta \right)$ and ${{a}_{y}}=-g\cos \left( \theta \right)$ ,$x={{v}_{\text{o }\left( \text{horizontal} \right)}}t+\dfrac{1}{2}{{a}_{x}}{{t}^{2}}$ , x is l units, ${{v}_{\text{o }\left( \text{horizontal} \right)}}={{v}_{\text{o}}}\sin \left( \theta \right)$ and ${{a}_{x}}=g\sin \left( \theta \right)$
Complete answer:
We will consider the following diagram.
The plane on which the ball hits is slightly inclined. We will suppose that the ball strikes the plane with velocity of ${{v}_{\text{o}}}$. As this velocity includes height and force of gravity so, ${{v}_{\text{o}}}=\sqrt{2gh}$. Therefore, we have equation in two dimension as $Vertical\,height={{v}_{\text{o }\left( \text{vertical} \right)}}t+\dfrac{1}{2}\left( \text{ver}\text{.}\, \right)\text{acceleration}\left( {{t}^{2}} \right)$. By taking vertical height as y and ver. Acceleration as ${{a}_{y}}$ so we get
$y={{v}_{\text{o }\left( \text{vertical} \right)}}t+\dfrac{1}{2}{{a}_{y}}{{t}^{2}}$
As vertical height is 0, ${{v}_{\text{o }\left( vertical \right)}}={{v}_{\text{o}}}\cos \left( \theta \right)$ and ${{a}_{y}}=-g\cos \left( \theta \right)$ therefore, $0={{v}_{\text{o}}}\cos \left( \theta \right)t-\dfrac{1}{2}g\cos \left( \theta \right){{t}^{2}}$
$\Rightarrow -\dfrac{1}{2}g\cos \left( \theta \right){{t}^{2}}+{{v}_{\text{o}}}\cos \left( \theta \right)t=0$
$\Rightarrow -g\cos \left( \theta \right){{t}^{2}}+2{{v}_{\text{o}}}\cos \left( \theta \right)t=0$
Therefore, we get
$\Rightarrow t\left( -g\cos \left( \theta \right)t+2{{v}_{\text{o}}}\cos \left( \theta \right) \right)=0$
$\Rightarrow t=0\,\,or\,\,-g\cos \left( \theta \right)t+2{{v}_{\text{o}}}\cos \left( \theta \right)=0$
$\Rightarrow t=0\,\,or\,\,-g\cos \left( \theta \right)t=-2{{v}_{\text{o}}}\cos \left( \theta \right)$
$\Rightarrow t=0\,\,or\,\,t=2\dfrac{{{v}_{\text{o}}}\cos \left( \theta \right)}{g\cos \left( \theta \right)}$
$\Rightarrow t=0\,\,or\,\,t=2\dfrac{{{v}_{\text{o}}}}{g}$
Now, similarly horizontal displacement is $x={{v}_{\text{o }\left( \text{horizontal} \right)}}t+\dfrac{1}{2}{{a}_{x}}{{t}^{2}}$. Let the horizontal distance covered by the ball is l units so, x is l units, ${{v}_{\text{o }\left( \text{horizontal} \right)}}={{v}_{\text{o}}}\sin \left( \theta \right)$ and ${{a}_{x}}=g\sin \left( \theta \right)$ therefore,$l={{v}_{\text{o}}}\sin \left( \theta \right)t+\dfrac{1}{2}g\sin \left( \theta \right){{t}^{2}}$. As $t=2\dfrac{{{v}_{\text{o}}}}{g}$ so,
$l={{v}_{\text{o}}}\sin \left( \theta \right)\left( 2\dfrac{{{v}_{\text{o}}}}{g} \right)+\dfrac{1}{2}g\sin \left( \theta \right){{\left( 2\dfrac{{{v}_{\text{o}}}}{g} \right)}^{2}}$
$\Rightarrow l={{v}_{\text{o}}}\sin \left( \theta \right)\left( 2\dfrac{{{v}_{\text{o}}}}{g} \right)+\dfrac{1}{2}g\sin \left( \theta \right){{\left( 2\dfrac{{{v}_{\text{o}}}}{g} \right)}^{2}}$
$\Rightarrow l={{v}_{\text{o}}}\sin \left( \theta \right)\left( 2\dfrac{{{v}_{\text{o}}}}{g} \right)+\sin \left( \theta \right)\times {{v}_{\text{o}}}\times 2\dfrac{{{v}_{\text{o}}}}{g}$
$\Rightarrow l=\dfrac{2{{v}_{\text{o}}}^{2}\sin \left( \theta \right)}{g}+\dfrac{2{{v}_{\text{o}}}^{2}\sin \left( \theta \right)}{g}$
$\Rightarrow l=\dfrac{4{{v}_{\text{o}}}^{2}\sin \left( \theta \right)}{g}$
Since, ${{v}_{\text{o}}}=\sqrt{2gh}$ so,
$l=\dfrac{4{{\left( \sqrt{2gh} \right)}^{2}}\sin \left( \theta \right)}{g}$
$\Rightarrow l=\dfrac{4\left( 2gh \right)\sin \left( \theta \right)}{g}$
$\Rightarrow l=8h\sin \left( \theta \right)$
Hence, the ball will again hit the inclined plane by getting a bounce off l length at $l=8h\sin \left( \theta \right)$ position.
Note:
Diagrams play an important part for this question. If the figure is incorrect then this means that the diagram is also incorrectly interpreted. Because the height here is taken as displacement so, this is actually due to the flat of the ball coming back to its position vertically. The value of time t = 0 is not considered here forward because of some action done in time t. So, definitely it will have some value of time. That is why the time is taken as $t=2\dfrac{{{v}_{\text{o}}}}{g}$. Vertical displacement is zero but horizontal is not because the horizontal position of the ball is not coming back to its original position due to the inclined plane.
Formula used:
${{v}_{\text{o}}}=\sqrt{2gh}$ where g is gravitational force, h is height, $Vertical\,height={{v}_{\text{o }\left( \text{vertical} \right)}}t+\dfrac{1}{2}\left( \text{ver}\text{.}\, \right)\text{acceleration}\left( {{t}^{2}} \right)$ , vertical height is 0, ${{v}_{\text{o }\left( vertical \right)}}={{v}_{\text{o}}}\cos \left( \theta \right)$ and ${{a}_{y}}=-g\cos \left( \theta \right)$ ,$x={{v}_{\text{o }\left( \text{horizontal} \right)}}t+\dfrac{1}{2}{{a}_{x}}{{t}^{2}}$ , x is l units, ${{v}_{\text{o }\left( \text{horizontal} \right)}}={{v}_{\text{o}}}\sin \left( \theta \right)$ and ${{a}_{x}}=g\sin \left( \theta \right)$
Complete answer:
We will consider the following diagram.
The plane on which the ball hits is slightly inclined. We will suppose that the ball strikes the plane with velocity of ${{v}_{\text{o}}}$. As this velocity includes height and force of gravity so, ${{v}_{\text{o}}}=\sqrt{2gh}$. Therefore, we have equation in two dimension as $Vertical\,height={{v}_{\text{o }\left( \text{vertical} \right)}}t+\dfrac{1}{2}\left( \text{ver}\text{.}\, \right)\text{acceleration}\left( {{t}^{2}} \right)$. By taking vertical height as y and ver. Acceleration as ${{a}_{y}}$ so we get
$y={{v}_{\text{o }\left( \text{vertical} \right)}}t+\dfrac{1}{2}{{a}_{y}}{{t}^{2}}$
As vertical height is 0, ${{v}_{\text{o }\left( vertical \right)}}={{v}_{\text{o}}}\cos \left( \theta \right)$ and ${{a}_{y}}=-g\cos \left( \theta \right)$ therefore, $0={{v}_{\text{o}}}\cos \left( \theta \right)t-\dfrac{1}{2}g\cos \left( \theta \right){{t}^{2}}$
$\Rightarrow -\dfrac{1}{2}g\cos \left( \theta \right){{t}^{2}}+{{v}_{\text{o}}}\cos \left( \theta \right)t=0$
$\Rightarrow -g\cos \left( \theta \right){{t}^{2}}+2{{v}_{\text{o}}}\cos \left( \theta \right)t=0$
Therefore, we get
$\Rightarrow t\left( -g\cos \left( \theta \right)t+2{{v}_{\text{o}}}\cos \left( \theta \right) \right)=0$
$\Rightarrow t=0\,\,or\,\,-g\cos \left( \theta \right)t+2{{v}_{\text{o}}}\cos \left( \theta \right)=0$
$\Rightarrow t=0\,\,or\,\,-g\cos \left( \theta \right)t=-2{{v}_{\text{o}}}\cos \left( \theta \right)$
$\Rightarrow t=0\,\,or\,\,t=2\dfrac{{{v}_{\text{o}}}\cos \left( \theta \right)}{g\cos \left( \theta \right)}$
$\Rightarrow t=0\,\,or\,\,t=2\dfrac{{{v}_{\text{o}}}}{g}$
Now, similarly horizontal displacement is $x={{v}_{\text{o }\left( \text{horizontal} \right)}}t+\dfrac{1}{2}{{a}_{x}}{{t}^{2}}$. Let the horizontal distance covered by the ball is l units so, x is l units, ${{v}_{\text{o }\left( \text{horizontal} \right)}}={{v}_{\text{o}}}\sin \left( \theta \right)$ and ${{a}_{x}}=g\sin \left( \theta \right)$ therefore,$l={{v}_{\text{o}}}\sin \left( \theta \right)t+\dfrac{1}{2}g\sin \left( \theta \right){{t}^{2}}$. As $t=2\dfrac{{{v}_{\text{o}}}}{g}$ so,
$l={{v}_{\text{o}}}\sin \left( \theta \right)\left( 2\dfrac{{{v}_{\text{o}}}}{g} \right)+\dfrac{1}{2}g\sin \left( \theta \right){{\left( 2\dfrac{{{v}_{\text{o}}}}{g} \right)}^{2}}$
$\Rightarrow l={{v}_{\text{o}}}\sin \left( \theta \right)\left( 2\dfrac{{{v}_{\text{o}}}}{g} \right)+\dfrac{1}{2}g\sin \left( \theta \right){{\left( 2\dfrac{{{v}_{\text{o}}}}{g} \right)}^{2}}$
$\Rightarrow l={{v}_{\text{o}}}\sin \left( \theta \right)\left( 2\dfrac{{{v}_{\text{o}}}}{g} \right)+\sin \left( \theta \right)\times {{v}_{\text{o}}}\times 2\dfrac{{{v}_{\text{o}}}}{g}$
$\Rightarrow l=\dfrac{2{{v}_{\text{o}}}^{2}\sin \left( \theta \right)}{g}+\dfrac{2{{v}_{\text{o}}}^{2}\sin \left( \theta \right)}{g}$
$\Rightarrow l=\dfrac{4{{v}_{\text{o}}}^{2}\sin \left( \theta \right)}{g}$
Since, ${{v}_{\text{o}}}=\sqrt{2gh}$ so,
$l=\dfrac{4{{\left( \sqrt{2gh} \right)}^{2}}\sin \left( \theta \right)}{g}$
$\Rightarrow l=\dfrac{4\left( 2gh \right)\sin \left( \theta \right)}{g}$
$\Rightarrow l=8h\sin \left( \theta \right)$
Hence, the ball will again hit the inclined plane by getting a bounce off l length at $l=8h\sin \left( \theta \right)$ position.
Note:
Diagrams play an important part for this question. If the figure is incorrect then this means that the diagram is also incorrectly interpreted. Because the height here is taken as displacement so, this is actually due to the flat of the ball coming back to its position vertically. The value of time t = 0 is not considered here forward because of some action done in time t. So, definitely it will have some value of time. That is why the time is taken as $t=2\dfrac{{{v}_{\text{o}}}}{g}$. Vertical displacement is zero but horizontal is not because the horizontal position of the ball is not coming back to its original position due to the inclined plane.
Recently Updated Pages
What is the difference between Henrys law and Raoults class 11 chemistry CBSE

Draw a neat diagram showing action of scheme on metal class 11 chemistry CBSE

Acid present in tamarind is A Lactic acid B Citric class 11 chemistry CBSE

The number of ways in which a mixed double tennis game class 11 maths CBSE

Draw a flowchart to show the breakdown of glucose by class 11 biology CBSE

The area of the parallelogram formed by the lines 3x class 11 maths CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

