
A bag contains 5 black and 6 red balls. Determine the number of ways in which 2 black and 3 red balls can be selected.
Answer
621.3k+ views
Hint: In this problem the bag contains 5 black and 6 red balls. We have to find the number of ways in which 2 black and 3 red balls can be selected, one thing is for sure that 2 black balls can only be drawn from the overall 5 black balls extending this concept to the red balls, 3 red balls can be selected from overall 6 red balls only. Use this concept to reach the solution.
The bag has 5 black balls and 6 red balls.
Now the number of ways of selecting 2 black balls from in total 5 black balls will be $^5{C_2}$…………… (1)
Now the number of ways of selecting 3 red balls from in total 6 red balls will be $^6{C_3}$…………… (2)
The total number of ways of selecting 2 black balls and 3 red balls will be equation (1) multiplied with equation (2).
${ \Rightarrow ^5}{C_2}{ \times ^6}{C_3}$…………….. (3)
Using the formula of $^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$ we can rewrite equation (3) as
$
{ \Rightarrow ^5}{C_2}{ \times ^6}{C_3} = \dfrac{{5!}}{{2!\left( {5 - 2} \right)!}} \times \dfrac{{6!}}{{3!\left( {6 - 3} \right)!}} \\
\Rightarrow \dfrac{{5!}}{{2!\left( 3 \right)!}} \times \dfrac{{6!}}{{3!\left( 3 \right)!}} \\
$
Using the concept that $n! = n \times (n - 1)(n - 2)(n - 3).......(n - r)!{\text{ where r < n}}$.
$
^5{C_2}{ \times ^6}{C_3} = \dfrac{{5 \times 4 \times 3!}}{{2\left( 3 \right)!}} \times \dfrac{{6 \times 5 \times 4 \times 3!}}{{3 \times 2 \times 1 \times \left( 3 \right)!}} \\
\Rightarrow 10 \times 20 = 200 \\
$
The number of ways in which 2 black and 3 red balls can be selected is 200.
Note: Whenever we face such types of problems the key concept is to have the physical understanding of the formula $^n{C_r}$ which is the number of ways of selecting any r entities out of n entities. This concept along with the mathematical formula will help you solve problems of this kind and will take you to the right answer.
The bag has 5 black balls and 6 red balls.
Now the number of ways of selecting 2 black balls from in total 5 black balls will be $^5{C_2}$…………… (1)
Now the number of ways of selecting 3 red balls from in total 6 red balls will be $^6{C_3}$…………… (2)
The total number of ways of selecting 2 black balls and 3 red balls will be equation (1) multiplied with equation (2).
${ \Rightarrow ^5}{C_2}{ \times ^6}{C_3}$…………….. (3)
Using the formula of $^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$ we can rewrite equation (3) as
$
{ \Rightarrow ^5}{C_2}{ \times ^6}{C_3} = \dfrac{{5!}}{{2!\left( {5 - 2} \right)!}} \times \dfrac{{6!}}{{3!\left( {6 - 3} \right)!}} \\
\Rightarrow \dfrac{{5!}}{{2!\left( 3 \right)!}} \times \dfrac{{6!}}{{3!\left( 3 \right)!}} \\
$
Using the concept that $n! = n \times (n - 1)(n - 2)(n - 3).......(n - r)!{\text{ where r < n}}$.
$
^5{C_2}{ \times ^6}{C_3} = \dfrac{{5 \times 4 \times 3!}}{{2\left( 3 \right)!}} \times \dfrac{{6 \times 5 \times 4 \times 3!}}{{3 \times 2 \times 1 \times \left( 3 \right)!}} \\
\Rightarrow 10 \times 20 = 200 \\
$
The number of ways in which 2 black and 3 red balls can be selected is 200.
Note: Whenever we face such types of problems the key concept is to have the physical understanding of the formula $^n{C_r}$ which is the number of ways of selecting any r entities out of n entities. This concept along with the mathematical formula will help you solve problems of this kind and will take you to the right answer.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which Country is Called "The Land of Festivals"?

What is Contraception List its four different methods class 10 biology CBSE

