
a, b, c are positive real numbers which are in HP. Then \[\dfrac{a+b}{2a-b}+\dfrac{c+b}{2c-b}\] is
(a) \[\ge 4\]
(b) \[\le 4\]
(c) equal to 0
(d) none of these
Answer
595.5k+ views
Hint: a, b and c are in H.P. The relation connecting them with, \[b=\dfrac{2ac}{\left( a+c \right)}\]. Now simplify the given expression and substitute 2ac in place of b (a + c) on further simplification put \[\dfrac{2ac}{b}\] on (a + c). Now simplify it using the expression, \[\dfrac{2}{b}=\dfrac{1}{a}+\dfrac{1}{c}\] and find the expression.
Complete step-by-step answer:
It is given that a, b, c are in Harmonic progression (HP). A HP is defined as a sequence of real number which is determined by taking the reciprocals of the arithmetic progression that does not contain zero.
As a, b, c are in HP, they are can be written as,
\[\Rightarrow b=\dfrac{2ac}{a+c}\] - (1)
We have been asked to find the value of,
\[\Rightarrow \dfrac{a+b}{2a-b}+\dfrac{c+b}{2c-b}\]
Let us simplify the expression,
\[\begin{align}
& =\dfrac{\left( a+b \right)\left( 2c-b \right)+\left( c+b \right)\left( 2a-b \right)}{\left( 2a-b \right)\left( 2c-b \right)} \\
& =\dfrac{2ac-ab+2bc-{{b}^{2}}+2ac-bc+2ab-{{b}^{2}}}{4ac-2ab-2bc+{{b}^{2}}} \\
\end{align}\]
\[=\dfrac{4ac+ab+bc-2{{b}^{2}}}{4ac-2ab-2bc+{{b}^{2}}}=\dfrac{4ac+b\left( a+c \right)-2{{b}^{2}}}{4ac-2b\left( a+c \right)+{{b}^{2}}}\] - (2)
From (1), \[b\left( a+c \right)=2ac\].
Hence let us replace \[b\left( a+c \right)\] from (2) with 2ac.
\[\begin{align}
& \therefore \dfrac{4ac+b\left( a+c \right)-2{{b}^{2}}}{4ac-2b\left( a+c \right)+{{b}^{2}}}=\dfrac{4ac+2ac-2{{b}^{2}}}{4ac-2\times 2ac+{{b}^{2}}} \\
& =\dfrac{6ac-2{{b}^{2}}}{4ac-4ac+{{b}^{2}}}=\dfrac{6ac-2{{b}^{2}}}{{{b}^{2}}}=\dfrac{6ac-2{{b}^{2}}}{{{b}^{2}}} \\
& =\dfrac{6ac}{{{b}^{2}}}-2 \\
\end{align}\]
From (1) we can form, \[\dfrac{2ac}{b}=a+c\]. Thus put the same in the above expression,
\[\Rightarrow \dfrac{3}{b}\times \left( \dfrac{2ac}{b} \right)-2=\dfrac{3}{b}\left( a+c \right)-2\]
As a, b and c are in HP we can write, \[\dfrac{2}{b}=\dfrac{1}{a}+\dfrac{1}{c}\] \[\Rightarrow \dfrac{1}{b}=\dfrac{1}{2}\left( \dfrac{1}{a}+\dfrac{1}{c} \right)\].
\[\therefore \dfrac{3}{b}\left( a+c \right)-2\]
\[\therefore \dfrac{3}{b}\left( a+c \right)-2=3\left( a+c \right)\times \dfrac{1}{b}-2=3\left( a+c \right)\times \dfrac{1}{2}\left( \dfrac{1}{a}+\dfrac{1}{c} \right)-2\]
\[\begin{align}
& \therefore \dfrac{3}{b}\left( a+c \right)-2=\dfrac{3}{2}\left( a+c \right)\left[ \dfrac{1}{a}+\dfrac{1}{c} \right]-2 \\
& \therefore \dfrac{3}{b}\left( a+c \right)-2=\dfrac{3}{2}\left[ \dfrac{a}{a}+\dfrac{a}{c}+\dfrac{c}{a}+\dfrac{c}{c} \right]-2 \\
\end{align}\]
\[\begin{align}
& \therefore \dfrac{3}{b}\left( a+c \right)-2=\dfrac{3}{2}\left[ 1+\dfrac{a}{c}+\dfrac{c}{a}+1 \right]-2=\dfrac{3}{2}\left[ 2+\dfrac{a}{c}+\dfrac{c}{a} \right]-2 \\
& \therefore \dfrac{3}{b}\left( a+c \right)-2=3+\dfrac{3a}{2c}+\dfrac{3c}{2a}-2 \\
\end{align}\]
\[\therefore \dfrac{3}{b}\left( a+c \right)-2=1+\dfrac{3}{2}\left( \dfrac{a}{c}+\dfrac{c}{a} \right)\] - (2)
Now let us find the arithmetic mean relation on \[\dfrac{a}{c}\] and \[\dfrac{c}{a}\].
\[\begin{align}
& \Rightarrow \dfrac{AM}{2}\ge \sqrt{GM} \\
& \Rightarrow \dfrac{\left( \dfrac{a}{c}+\dfrac{c}{a} \right)}{2}\ge \sqrt{\dfrac{a}{c}\times \dfrac{c}{a}}\Rightarrow \dfrac{a}{c}+\dfrac{c}{a}\ge 2 \\
\end{align}\]
i.e. \[1+\dfrac{3}{2}\left( \dfrac{a}{c}+\dfrac{c}{a} \right)\ge 1+\dfrac{3}{2}\times 2=1+3=4\]
\[\therefore \] Then the expression will be greater than or equal to 4.
\[\therefore \] Option (a) is the correct answer.
Note: The basic for this solution are the formula, \[b=\dfrac{2ac}{a+c}\] and \[\dfrac{2}{b}=\dfrac{1}{a}+\dfrac{1}{c}\]. Be careful while substituting and don’t misplace the variables. After finding the required expression don’t forget to find the arithmetic mean of \[\dfrac{a}{c}\] and \[\dfrac{c}{a}\].
Complete step-by-step answer:
It is given that a, b, c are in Harmonic progression (HP). A HP is defined as a sequence of real number which is determined by taking the reciprocals of the arithmetic progression that does not contain zero.
As a, b, c are in HP, they are can be written as,
\[\Rightarrow b=\dfrac{2ac}{a+c}\] - (1)
We have been asked to find the value of,
\[\Rightarrow \dfrac{a+b}{2a-b}+\dfrac{c+b}{2c-b}\]
Let us simplify the expression,
\[\begin{align}
& =\dfrac{\left( a+b \right)\left( 2c-b \right)+\left( c+b \right)\left( 2a-b \right)}{\left( 2a-b \right)\left( 2c-b \right)} \\
& =\dfrac{2ac-ab+2bc-{{b}^{2}}+2ac-bc+2ab-{{b}^{2}}}{4ac-2ab-2bc+{{b}^{2}}} \\
\end{align}\]
\[=\dfrac{4ac+ab+bc-2{{b}^{2}}}{4ac-2ab-2bc+{{b}^{2}}}=\dfrac{4ac+b\left( a+c \right)-2{{b}^{2}}}{4ac-2b\left( a+c \right)+{{b}^{2}}}\] - (2)
From (1), \[b\left( a+c \right)=2ac\].
Hence let us replace \[b\left( a+c \right)\] from (2) with 2ac.
\[\begin{align}
& \therefore \dfrac{4ac+b\left( a+c \right)-2{{b}^{2}}}{4ac-2b\left( a+c \right)+{{b}^{2}}}=\dfrac{4ac+2ac-2{{b}^{2}}}{4ac-2\times 2ac+{{b}^{2}}} \\
& =\dfrac{6ac-2{{b}^{2}}}{4ac-4ac+{{b}^{2}}}=\dfrac{6ac-2{{b}^{2}}}{{{b}^{2}}}=\dfrac{6ac-2{{b}^{2}}}{{{b}^{2}}} \\
& =\dfrac{6ac}{{{b}^{2}}}-2 \\
\end{align}\]
From (1) we can form, \[\dfrac{2ac}{b}=a+c\]. Thus put the same in the above expression,
\[\Rightarrow \dfrac{3}{b}\times \left( \dfrac{2ac}{b} \right)-2=\dfrac{3}{b}\left( a+c \right)-2\]
As a, b and c are in HP we can write, \[\dfrac{2}{b}=\dfrac{1}{a}+\dfrac{1}{c}\] \[\Rightarrow \dfrac{1}{b}=\dfrac{1}{2}\left( \dfrac{1}{a}+\dfrac{1}{c} \right)\].
\[\therefore \dfrac{3}{b}\left( a+c \right)-2\]
\[\therefore \dfrac{3}{b}\left( a+c \right)-2=3\left( a+c \right)\times \dfrac{1}{b}-2=3\left( a+c \right)\times \dfrac{1}{2}\left( \dfrac{1}{a}+\dfrac{1}{c} \right)-2\]
\[\begin{align}
& \therefore \dfrac{3}{b}\left( a+c \right)-2=\dfrac{3}{2}\left( a+c \right)\left[ \dfrac{1}{a}+\dfrac{1}{c} \right]-2 \\
& \therefore \dfrac{3}{b}\left( a+c \right)-2=\dfrac{3}{2}\left[ \dfrac{a}{a}+\dfrac{a}{c}+\dfrac{c}{a}+\dfrac{c}{c} \right]-2 \\
\end{align}\]
\[\begin{align}
& \therefore \dfrac{3}{b}\left( a+c \right)-2=\dfrac{3}{2}\left[ 1+\dfrac{a}{c}+\dfrac{c}{a}+1 \right]-2=\dfrac{3}{2}\left[ 2+\dfrac{a}{c}+\dfrac{c}{a} \right]-2 \\
& \therefore \dfrac{3}{b}\left( a+c \right)-2=3+\dfrac{3a}{2c}+\dfrac{3c}{2a}-2 \\
\end{align}\]
\[\therefore \dfrac{3}{b}\left( a+c \right)-2=1+\dfrac{3}{2}\left( \dfrac{a}{c}+\dfrac{c}{a} \right)\] - (2)
Now let us find the arithmetic mean relation on \[\dfrac{a}{c}\] and \[\dfrac{c}{a}\].
\[\begin{align}
& \Rightarrow \dfrac{AM}{2}\ge \sqrt{GM} \\
& \Rightarrow \dfrac{\left( \dfrac{a}{c}+\dfrac{c}{a} \right)}{2}\ge \sqrt{\dfrac{a}{c}\times \dfrac{c}{a}}\Rightarrow \dfrac{a}{c}+\dfrac{c}{a}\ge 2 \\
\end{align}\]
i.e. \[1+\dfrac{3}{2}\left( \dfrac{a}{c}+\dfrac{c}{a} \right)\ge 1+\dfrac{3}{2}\times 2=1+3=4\]
\[\therefore \] Then the expression will be greater than or equal to 4.
\[\therefore \] Option (a) is the correct answer.
Note: The basic for this solution are the formula, \[b=\dfrac{2ac}{a+c}\] and \[\dfrac{2}{b}=\dfrac{1}{a}+\dfrac{1}{c}\]. Be careful while substituting and don’t misplace the variables. After finding the required expression don’t forget to find the arithmetic mean of \[\dfrac{a}{c}\] and \[\dfrac{c}{a}\].
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

