
a, b, c are positive real numbers which are in HP. Then \[\dfrac{a+b}{2a-b}+\dfrac{c+b}{2c-b}\] is
(a) \[\ge 4\]
(b) \[\le 4\]
(c) equal to 0
(d) none of these
Answer
581.4k+ views
Hint: a, b and c are in H.P. The relation connecting them with, \[b=\dfrac{2ac}{\left( a+c \right)}\]. Now simplify the given expression and substitute 2ac in place of b (a + c) on further simplification put \[\dfrac{2ac}{b}\] on (a + c). Now simplify it using the expression, \[\dfrac{2}{b}=\dfrac{1}{a}+\dfrac{1}{c}\] and find the expression.
Complete step-by-step answer:
It is given that a, b, c are in Harmonic progression (HP). A HP is defined as a sequence of real number which is determined by taking the reciprocals of the arithmetic progression that does not contain zero.
As a, b, c are in HP, they are can be written as,
\[\Rightarrow b=\dfrac{2ac}{a+c}\] - (1)
We have been asked to find the value of,
\[\Rightarrow \dfrac{a+b}{2a-b}+\dfrac{c+b}{2c-b}\]
Let us simplify the expression,
\[\begin{align}
& =\dfrac{\left( a+b \right)\left( 2c-b \right)+\left( c+b \right)\left( 2a-b \right)}{\left( 2a-b \right)\left( 2c-b \right)} \\
& =\dfrac{2ac-ab+2bc-{{b}^{2}}+2ac-bc+2ab-{{b}^{2}}}{4ac-2ab-2bc+{{b}^{2}}} \\
\end{align}\]
\[=\dfrac{4ac+ab+bc-2{{b}^{2}}}{4ac-2ab-2bc+{{b}^{2}}}=\dfrac{4ac+b\left( a+c \right)-2{{b}^{2}}}{4ac-2b\left( a+c \right)+{{b}^{2}}}\] - (2)
From (1), \[b\left( a+c \right)=2ac\].
Hence let us replace \[b\left( a+c \right)\] from (2) with 2ac.
\[\begin{align}
& \therefore \dfrac{4ac+b\left( a+c \right)-2{{b}^{2}}}{4ac-2b\left( a+c \right)+{{b}^{2}}}=\dfrac{4ac+2ac-2{{b}^{2}}}{4ac-2\times 2ac+{{b}^{2}}} \\
& =\dfrac{6ac-2{{b}^{2}}}{4ac-4ac+{{b}^{2}}}=\dfrac{6ac-2{{b}^{2}}}{{{b}^{2}}}=\dfrac{6ac-2{{b}^{2}}}{{{b}^{2}}} \\
& =\dfrac{6ac}{{{b}^{2}}}-2 \\
\end{align}\]
From (1) we can form, \[\dfrac{2ac}{b}=a+c\]. Thus put the same in the above expression,
\[\Rightarrow \dfrac{3}{b}\times \left( \dfrac{2ac}{b} \right)-2=\dfrac{3}{b}\left( a+c \right)-2\]
As a, b and c are in HP we can write, \[\dfrac{2}{b}=\dfrac{1}{a}+\dfrac{1}{c}\] \[\Rightarrow \dfrac{1}{b}=\dfrac{1}{2}\left( \dfrac{1}{a}+\dfrac{1}{c} \right)\].
\[\therefore \dfrac{3}{b}\left( a+c \right)-2\]
\[\therefore \dfrac{3}{b}\left( a+c \right)-2=3\left( a+c \right)\times \dfrac{1}{b}-2=3\left( a+c \right)\times \dfrac{1}{2}\left( \dfrac{1}{a}+\dfrac{1}{c} \right)-2\]
\[\begin{align}
& \therefore \dfrac{3}{b}\left( a+c \right)-2=\dfrac{3}{2}\left( a+c \right)\left[ \dfrac{1}{a}+\dfrac{1}{c} \right]-2 \\
& \therefore \dfrac{3}{b}\left( a+c \right)-2=\dfrac{3}{2}\left[ \dfrac{a}{a}+\dfrac{a}{c}+\dfrac{c}{a}+\dfrac{c}{c} \right]-2 \\
\end{align}\]
\[\begin{align}
& \therefore \dfrac{3}{b}\left( a+c \right)-2=\dfrac{3}{2}\left[ 1+\dfrac{a}{c}+\dfrac{c}{a}+1 \right]-2=\dfrac{3}{2}\left[ 2+\dfrac{a}{c}+\dfrac{c}{a} \right]-2 \\
& \therefore \dfrac{3}{b}\left( a+c \right)-2=3+\dfrac{3a}{2c}+\dfrac{3c}{2a}-2 \\
\end{align}\]
\[\therefore \dfrac{3}{b}\left( a+c \right)-2=1+\dfrac{3}{2}\left( \dfrac{a}{c}+\dfrac{c}{a} \right)\] - (2)
Now let us find the arithmetic mean relation on \[\dfrac{a}{c}\] and \[\dfrac{c}{a}\].
\[\begin{align}
& \Rightarrow \dfrac{AM}{2}\ge \sqrt{GM} \\
& \Rightarrow \dfrac{\left( \dfrac{a}{c}+\dfrac{c}{a} \right)}{2}\ge \sqrt{\dfrac{a}{c}\times \dfrac{c}{a}}\Rightarrow \dfrac{a}{c}+\dfrac{c}{a}\ge 2 \\
\end{align}\]
i.e. \[1+\dfrac{3}{2}\left( \dfrac{a}{c}+\dfrac{c}{a} \right)\ge 1+\dfrac{3}{2}\times 2=1+3=4\]
\[\therefore \] Then the expression will be greater than or equal to 4.
\[\therefore \] Option (a) is the correct answer.
Note: The basic for this solution are the formula, \[b=\dfrac{2ac}{a+c}\] and \[\dfrac{2}{b}=\dfrac{1}{a}+\dfrac{1}{c}\]. Be careful while substituting and don’t misplace the variables. After finding the required expression don’t forget to find the arithmetic mean of \[\dfrac{a}{c}\] and \[\dfrac{c}{a}\].
Complete step-by-step answer:
It is given that a, b, c are in Harmonic progression (HP). A HP is defined as a sequence of real number which is determined by taking the reciprocals of the arithmetic progression that does not contain zero.
As a, b, c are in HP, they are can be written as,
\[\Rightarrow b=\dfrac{2ac}{a+c}\] - (1)
We have been asked to find the value of,
\[\Rightarrow \dfrac{a+b}{2a-b}+\dfrac{c+b}{2c-b}\]
Let us simplify the expression,
\[\begin{align}
& =\dfrac{\left( a+b \right)\left( 2c-b \right)+\left( c+b \right)\left( 2a-b \right)}{\left( 2a-b \right)\left( 2c-b \right)} \\
& =\dfrac{2ac-ab+2bc-{{b}^{2}}+2ac-bc+2ab-{{b}^{2}}}{4ac-2ab-2bc+{{b}^{2}}} \\
\end{align}\]
\[=\dfrac{4ac+ab+bc-2{{b}^{2}}}{4ac-2ab-2bc+{{b}^{2}}}=\dfrac{4ac+b\left( a+c \right)-2{{b}^{2}}}{4ac-2b\left( a+c \right)+{{b}^{2}}}\] - (2)
From (1), \[b\left( a+c \right)=2ac\].
Hence let us replace \[b\left( a+c \right)\] from (2) with 2ac.
\[\begin{align}
& \therefore \dfrac{4ac+b\left( a+c \right)-2{{b}^{2}}}{4ac-2b\left( a+c \right)+{{b}^{2}}}=\dfrac{4ac+2ac-2{{b}^{2}}}{4ac-2\times 2ac+{{b}^{2}}} \\
& =\dfrac{6ac-2{{b}^{2}}}{4ac-4ac+{{b}^{2}}}=\dfrac{6ac-2{{b}^{2}}}{{{b}^{2}}}=\dfrac{6ac-2{{b}^{2}}}{{{b}^{2}}} \\
& =\dfrac{6ac}{{{b}^{2}}}-2 \\
\end{align}\]
From (1) we can form, \[\dfrac{2ac}{b}=a+c\]. Thus put the same in the above expression,
\[\Rightarrow \dfrac{3}{b}\times \left( \dfrac{2ac}{b} \right)-2=\dfrac{3}{b}\left( a+c \right)-2\]
As a, b and c are in HP we can write, \[\dfrac{2}{b}=\dfrac{1}{a}+\dfrac{1}{c}\] \[\Rightarrow \dfrac{1}{b}=\dfrac{1}{2}\left( \dfrac{1}{a}+\dfrac{1}{c} \right)\].
\[\therefore \dfrac{3}{b}\left( a+c \right)-2\]
\[\therefore \dfrac{3}{b}\left( a+c \right)-2=3\left( a+c \right)\times \dfrac{1}{b}-2=3\left( a+c \right)\times \dfrac{1}{2}\left( \dfrac{1}{a}+\dfrac{1}{c} \right)-2\]
\[\begin{align}
& \therefore \dfrac{3}{b}\left( a+c \right)-2=\dfrac{3}{2}\left( a+c \right)\left[ \dfrac{1}{a}+\dfrac{1}{c} \right]-2 \\
& \therefore \dfrac{3}{b}\left( a+c \right)-2=\dfrac{3}{2}\left[ \dfrac{a}{a}+\dfrac{a}{c}+\dfrac{c}{a}+\dfrac{c}{c} \right]-2 \\
\end{align}\]
\[\begin{align}
& \therefore \dfrac{3}{b}\left( a+c \right)-2=\dfrac{3}{2}\left[ 1+\dfrac{a}{c}+\dfrac{c}{a}+1 \right]-2=\dfrac{3}{2}\left[ 2+\dfrac{a}{c}+\dfrac{c}{a} \right]-2 \\
& \therefore \dfrac{3}{b}\left( a+c \right)-2=3+\dfrac{3a}{2c}+\dfrac{3c}{2a}-2 \\
\end{align}\]
\[\therefore \dfrac{3}{b}\left( a+c \right)-2=1+\dfrac{3}{2}\left( \dfrac{a}{c}+\dfrac{c}{a} \right)\] - (2)
Now let us find the arithmetic mean relation on \[\dfrac{a}{c}\] and \[\dfrac{c}{a}\].
\[\begin{align}
& \Rightarrow \dfrac{AM}{2}\ge \sqrt{GM} \\
& \Rightarrow \dfrac{\left( \dfrac{a}{c}+\dfrac{c}{a} \right)}{2}\ge \sqrt{\dfrac{a}{c}\times \dfrac{c}{a}}\Rightarrow \dfrac{a}{c}+\dfrac{c}{a}\ge 2 \\
\end{align}\]
i.e. \[1+\dfrac{3}{2}\left( \dfrac{a}{c}+\dfrac{c}{a} \right)\ge 1+\dfrac{3}{2}\times 2=1+3=4\]
\[\therefore \] Then the expression will be greater than or equal to 4.
\[\therefore \] Option (a) is the correct answer.
Note: The basic for this solution are the formula, \[b=\dfrac{2ac}{a+c}\] and \[\dfrac{2}{b}=\dfrac{1}{a}+\dfrac{1}{c}\]. Be careful while substituting and don’t misplace the variables. After finding the required expression don’t forget to find the arithmetic mean of \[\dfrac{a}{c}\] and \[\dfrac{c}{a}\].
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

