Answer
Verified
456k+ views
Hint: In this particular question use the concept of ratio of investment i.e. the ratio of invest of A, B and C is {(A’s initial investment multiplied by 5 months + [A’s initial investment – withdrawal amount] multiplied by the remaining months)} : {(B’s initial investment multiplied by 5 months + [B’s initial investment – withdrawal amount] multiplied by the remaining months)} : {(C’s initial investment multiplied by 5 months + [C’s initial investment + more invested amount] multiplied by the remaining months)}, so use these concepts to reach the solution of the question.
Complete step by step answer:
Given data:
A, B and C start a business each investing Rs 20000.
As we all know that in a year there are 12 months.
It is also given that after 5 months A withdraw Rs 5000, B withdraw Rs 4000 and C invests 6000 more.
So the ratio of investment of A, B and C = {(A’s initial investment multiplied by 5 months + [A’s initial investment – withdrawal amount] multiplied by the remaining months)} : {(B’s initial investment multiplied by 5 months + [B’s initial investment – withdrawal amount] multiplied by the remaining months)} : {(C’s initial investment multiplied by 5 months + [C’s initial investment + more invested amount] multiplied by the remaining months)}.
So the ratio of investment of A, B and C = A : B : C = \[\left( {20000 \times 5 + \left( {20000 - 5000} \right)7} \right):\left( {20000 \times 5 + \left( {20000 - 4000} \right)7} \right):\left( {20000 \times 5 + \left( {20000 + 6000} \right)7} \right)\]
Now simplify we have,
So the ratio of investment of A, B and C = \[\left( {205000} \right):\left( {212000} \right):\left( {282000} \right)\]
So the ratio of investment of A, B and C = \[\left( {205} \right):\left( {212} \right):\left( {282} \right)\]
Now it is given that the total profit was Rs. 69900.
So the profit of A is the ratio of investment ratio of A to the sum of the investment ratio of A, B and C multiplied by the profit.
So the profit of A = $\dfrac{{205}}{{205 + 212 + 282}}\left( {69900} \right)$
Now simplify we have,
So the profit of A = $\dfrac{{205}}{{699}}\left( {69900} \right) = 20500$ Rs.
Similarly,
Profit of B = $\dfrac{{212}}{{699}}\left( {69900} \right) = 21200$ Rs.
Profit of C = $\dfrac{{282}}{{699}}\left( {69900} \right) = 28200$ Rs.
So, the correct answer is “Option c”.
Note: Whenever we face such types of questions the key concept we have to remember is that always recall the profit of any particular person is the ratio of investment ratio of the particular person to the sum of the investment ratio of A, B and C multiplied by the profit, so simply substitute the values as above and simplify we will get the required answer.
Complete step by step answer:
Given data:
A, B and C start a business each investing Rs 20000.
As we all know that in a year there are 12 months.
It is also given that after 5 months A withdraw Rs 5000, B withdraw Rs 4000 and C invests 6000 more.
So the ratio of investment of A, B and C = {(A’s initial investment multiplied by 5 months + [A’s initial investment – withdrawal amount] multiplied by the remaining months)} : {(B’s initial investment multiplied by 5 months + [B’s initial investment – withdrawal amount] multiplied by the remaining months)} : {(C’s initial investment multiplied by 5 months + [C’s initial investment + more invested amount] multiplied by the remaining months)}.
So the ratio of investment of A, B and C = A : B : C = \[\left( {20000 \times 5 + \left( {20000 - 5000} \right)7} \right):\left( {20000 \times 5 + \left( {20000 - 4000} \right)7} \right):\left( {20000 \times 5 + \left( {20000 + 6000} \right)7} \right)\]
Now simplify we have,
So the ratio of investment of A, B and C = \[\left( {205000} \right):\left( {212000} \right):\left( {282000} \right)\]
So the ratio of investment of A, B and C = \[\left( {205} \right):\left( {212} \right):\left( {282} \right)\]
Now it is given that the total profit was Rs. 69900.
So the profit of A is the ratio of investment ratio of A to the sum of the investment ratio of A, B and C multiplied by the profit.
So the profit of A = $\dfrac{{205}}{{205 + 212 + 282}}\left( {69900} \right)$
Now simplify we have,
So the profit of A = $\dfrac{{205}}{{699}}\left( {69900} \right) = 20500$ Rs.
Similarly,
Profit of B = $\dfrac{{212}}{{699}}\left( {69900} \right) = 21200$ Rs.
Profit of C = $\dfrac{{282}}{{699}}\left( {69900} \right) = 28200$ Rs.
So, the correct answer is “Option c”.
Note: Whenever we face such types of questions the key concept we have to remember is that always recall the profit of any particular person is the ratio of investment ratio of the particular person to the sum of the investment ratio of A, B and C multiplied by the profit, so simply substitute the values as above and simplify we will get the required answer.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
What percentage of the solar systems mass is found class 8 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Difference Between Plant Cell and Animal Cell
Why is there a time difference of about 5 hours between class 10 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE