
A, B and C are three collinear points. The coordinates of A and B are $ \left( 3,4 \right) $ and $ \left( 7,7 \right) $ respectively and $ AC=10 $ units. Find the sum of the coordinates of C.
Answer
566.4k+ views
Hint: If three points A, B and C are collinear in that order, then $ AB+BC=AC $.
The section formula gives the coordinates of a point $ P\left( x,y \right) $ which divides the line joining two points $ A\left( {{x}_{1}},{{y}_{1}} \right) $ and $ B\left( {{x}_{2}},{{y}_{2}} \right) $ in the ratio $ AP:PB=m:n $, internally or externally.
For internal division: $ P(x,y)=\left( \dfrac{m{{x}_{2}}+n{{x}_{1}}}{m+n},\dfrac{m{{y}_{2}}+n{{y}_{1}}}{m+n} \right) $.
For external division: $ P(x,y)=\left( \dfrac{m{{x}_{2}}-n{{x}_{1}}}{m-n},\dfrac{m{{y}_{2}}-n{{y}_{1}}}{m-n} \right) $.
The distance between two points $ A\left( {{x}_{1}},{{y}_{1}} \right) $ and $ B\left( {{x}_{2}},{{y}_{2}} \right) $ can be calculated by using the Pythagoras' theorem. It is given by $ A{{B}^{2}}={{({{x}_{1}}-{{x}_{2}})}^{2}}+{{({{y}_{1}}-{{y}_{2}})}^{2}} $.
Assume the coordinates of C to be $ \left( x,y \right) $. Use the section formula to find the values of $ x $ and $ y $.
Complete step by step answer:
The two given points are $ A\left( 3,4 \right) $ and $ B\left( 7,7 \right) $. Let's say that the coordinates of the third point are $ C\left( x,y \right) $.
We can find the distance AB using the formula for the distance:
$ A{{B}^{2}}={{(3-7)}^{2}}+{{(4-7)}^{2}} $
⇒ $ A{{B}^{2}}={{4}^{2}}+{{3}^{2}} $
⇒ $ A{{B}^{2}}=16+9 $
⇒ $ A{{B}^{2}}=25 $
⇒ $ AB=5 $
We are also given that $ AC=10 $.
Since the points are given to be collinear and $ AC>AB $, either A is between B and C or B is between A and C. The two positions of the point C are shown in the diagram below:
We have the following two cases:
CASE 1: A divides BC in the ratio $ BA:AC=5:10=1:2 $ internally.
Using the section formula, $ A(3,4)=\left( \dfrac{2(7)+1(x)}{2+1},\dfrac{2(7)+1(y)}{2+1} \right) $.
⇒ $ 3=\dfrac{14+x}{3} $ and $ 4=\dfrac{14+y}{3} $
⇒ $ 9=14+x $ and $ 12=14+y $
⇒ $ x=-5 $ and $ y=-2 $
CASE 2: B divides AC in the ratio $ AB:BC=5:5=1:1 $ internally.
Using the section formula, $ B(7,7)=\left( \dfrac{1(3)+1(x)}{1+1},\dfrac{1(4)+1(y)}{1+1} \right) $.
⇒ $ 7=\dfrac{3+x}{2} $ and $ 7=\dfrac{4+y}{2} $
⇒ $ 14=3+x $ and $ 14=4+y $
⇒ $ x=11 $ and $ y=10 $
Therefore, the coordinates of C are either $ C\left( -5,-2 \right) $ or $ C\left( 11,10 \right) $.
The sum of the coordinates of C will be either $ -5+(-2)=-7 $ or $ 11+10=21 $.
Note: The question can also be solved using the distance formula.
For three points $ A\left( {{x}_{1}},{{y}_{1}} \right) $, $ B\left( {{x}_{2}},{{y}_{2}} \right) $ and $ C\left( {{x}_{3}},{{y}_{3}} \right) $ to be collinear, the slope of each line segment should be same. i.e. $ \dfrac{{{x}_{1}}-{{x}_{2}}}{{{y}_{1}}-{{y}_{2}}}=\dfrac{{{x}_{2}}-{{x}_{3}}}{{{y}_{2}}-{{y}_{3}}}=\dfrac{{{x}_{3}}-{{x}_{1}}}{{{y}_{3}}-{{y}_{1}}} $.
There are many ways to show that three points A, B and C are collinear (in a straight line):
Section formula (Ratio / Slope method).
Distance method: $ AB+BC=AC $.
Area method: $ \text{Area of }\Delta ABC=0 $.
The section formula gives the coordinates of a point $ P\left( x,y \right) $ which divides the line joining two points $ A\left( {{x}_{1}},{{y}_{1}} \right) $ and $ B\left( {{x}_{2}},{{y}_{2}} \right) $ in the ratio $ AP:PB=m:n $, internally or externally.
For internal division: $ P(x,y)=\left( \dfrac{m{{x}_{2}}+n{{x}_{1}}}{m+n},\dfrac{m{{y}_{2}}+n{{y}_{1}}}{m+n} \right) $.
For external division: $ P(x,y)=\left( \dfrac{m{{x}_{2}}-n{{x}_{1}}}{m-n},\dfrac{m{{y}_{2}}-n{{y}_{1}}}{m-n} \right) $.
The distance between two points $ A\left( {{x}_{1}},{{y}_{1}} \right) $ and $ B\left( {{x}_{2}},{{y}_{2}} \right) $ can be calculated by using the Pythagoras' theorem. It is given by $ A{{B}^{2}}={{({{x}_{1}}-{{x}_{2}})}^{2}}+{{({{y}_{1}}-{{y}_{2}})}^{2}} $.
Assume the coordinates of C to be $ \left( x,y \right) $. Use the section formula to find the values of $ x $ and $ y $.
Complete step by step answer:
The two given points are $ A\left( 3,4 \right) $ and $ B\left( 7,7 \right) $. Let's say that the coordinates of the third point are $ C\left( x,y \right) $.
We can find the distance AB using the formula for the distance:
$ A{{B}^{2}}={{(3-7)}^{2}}+{{(4-7)}^{2}} $
⇒ $ A{{B}^{2}}={{4}^{2}}+{{3}^{2}} $
⇒ $ A{{B}^{2}}=16+9 $
⇒ $ A{{B}^{2}}=25 $
⇒ $ AB=5 $
We are also given that $ AC=10 $.
Since the points are given to be collinear and $ AC>AB $, either A is between B and C or B is between A and C. The two positions of the point C are shown in the diagram below:
We have the following two cases:
CASE 1: A divides BC in the ratio $ BA:AC=5:10=1:2 $ internally.
Using the section formula, $ A(3,4)=\left( \dfrac{2(7)+1(x)}{2+1},\dfrac{2(7)+1(y)}{2+1} \right) $.
⇒ $ 3=\dfrac{14+x}{3} $ and $ 4=\dfrac{14+y}{3} $
⇒ $ 9=14+x $ and $ 12=14+y $
⇒ $ x=-5 $ and $ y=-2 $
CASE 2: B divides AC in the ratio $ AB:BC=5:5=1:1 $ internally.
Using the section formula, $ B(7,7)=\left( \dfrac{1(3)+1(x)}{1+1},\dfrac{1(4)+1(y)}{1+1} \right) $.
⇒ $ 7=\dfrac{3+x}{2} $ and $ 7=\dfrac{4+y}{2} $
⇒ $ 14=3+x $ and $ 14=4+y $
⇒ $ x=11 $ and $ y=10 $
Therefore, the coordinates of C are either $ C\left( -5,-2 \right) $ or $ C\left( 11,10 \right) $.
The sum of the coordinates of C will be either $ -5+(-2)=-7 $ or $ 11+10=21 $.
Note: The question can also be solved using the distance formula.
For three points $ A\left( {{x}_{1}},{{y}_{1}} \right) $, $ B\left( {{x}_{2}},{{y}_{2}} \right) $ and $ C\left( {{x}_{3}},{{y}_{3}} \right) $ to be collinear, the slope of each line segment should be same. i.e. $ \dfrac{{{x}_{1}}-{{x}_{2}}}{{{y}_{1}}-{{y}_{2}}}=\dfrac{{{x}_{2}}-{{x}_{3}}}{{{y}_{2}}-{{y}_{3}}}=\dfrac{{{x}_{3}}-{{x}_{1}}}{{{y}_{3}}-{{y}_{1}}} $.
There are many ways to show that three points A, B and C are collinear (in a straight line):
Section formula (Ratio / Slope method).
Distance method: $ AB+BC=AC $.
Area method: $ \text{Area of }\Delta ABC=0 $.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

