
A and B together can do a job in 2 days; B and C can do it in four days; and A and C in $2\dfrac{2}{5}$ days. The number of days required for A to do the job alone is:
A. 1
B. 3
C. 6
D. 12
Answer
610.8k+ views
Hint: We will be using the concept of time and work to make equations with the help of data given then we will solve these equations to find the required answer.
Complete step-by-step answer:
Now, we will first let the work A, B and C do in 1 day be a, b, c respectively.
Now, we have been given that A and B can do a job in 2 days. So, we have work done by A and B in 1 day \[=\dfrac{1}{2}\]
$a+b=\dfrac{1}{2}............\left( 1 \right)$
Also, B and C can do the same work in 4 days. So, we have,
Work done by B and C in 1 day $=\dfrac{1}{4}$
$b+c=\dfrac{1}{4}............\left( 2 \right)$
Also, we have been given that A and C can complete the work in $2\dfrac{2}{5}$days or $\dfrac{12}{5}$ days. So, we have,
$a+c=\dfrac{5}{12}............\left( 3 \right)$
Now, we will add (1), (2) and (3)
$2\left( a+b+c \right)=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{5}{12}$
Now, taking 12 as LCM, we have,
$\begin{align}
& 2\left( a+b+c \right)=\dfrac{6+3+5}{12} \\
& a+b+c=\dfrac{14}{2\times 12} \\
& a+b+c=\dfrac{7}{12} \\
\end{align}$
Now, we will substitute the value of b + c from (2).
$\begin{align}
& a+\dfrac{1}{4}=\dfrac{7}{12} \\
& a=\dfrac{7}{12}-\dfrac{1}{4} \\
& a=\dfrac{7-3}{12} \\
& a=\dfrac{1}{3} \\
\end{align}$
Now, A can do $\dfrac{1}{3}$th of the work in 1 day. So, he can do the complete work in $\dfrac{1}{\dfrac{1}{3}}=3days$.
So, the correct option is (B).
Note: To solve these types of questions it is important to note that if a man can complete a work in x days then the work he will do in 1 day is $\dfrac{1}{x}$.
Complete step-by-step answer:
Now, we will first let the work A, B and C do in 1 day be a, b, c respectively.
Now, we have been given that A and B can do a job in 2 days. So, we have work done by A and B in 1 day \[=\dfrac{1}{2}\]
$a+b=\dfrac{1}{2}............\left( 1 \right)$
Also, B and C can do the same work in 4 days. So, we have,
Work done by B and C in 1 day $=\dfrac{1}{4}$
$b+c=\dfrac{1}{4}............\left( 2 \right)$
Also, we have been given that A and C can complete the work in $2\dfrac{2}{5}$days or $\dfrac{12}{5}$ days. So, we have,
$a+c=\dfrac{5}{12}............\left( 3 \right)$
Now, we will add (1), (2) and (3)
$2\left( a+b+c \right)=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{5}{12}$
Now, taking 12 as LCM, we have,
$\begin{align}
& 2\left( a+b+c \right)=\dfrac{6+3+5}{12} \\
& a+b+c=\dfrac{14}{2\times 12} \\
& a+b+c=\dfrac{7}{12} \\
\end{align}$
Now, we will substitute the value of b + c from (2).
$\begin{align}
& a+\dfrac{1}{4}=\dfrac{7}{12} \\
& a=\dfrac{7}{12}-\dfrac{1}{4} \\
& a=\dfrac{7-3}{12} \\
& a=\dfrac{1}{3} \\
\end{align}$
Now, A can do $\dfrac{1}{3}$th of the work in 1 day. So, he can do the complete work in $\dfrac{1}{\dfrac{1}{3}}=3days$.
So, the correct option is (B).
Note: To solve these types of questions it is important to note that if a man can complete a work in x days then the work he will do in 1 day is $\dfrac{1}{x}$.
Recently Updated Pages
Master Class 7 English: Engaging Questions & Answers for Success

Master Class 7 Maths: Engaging Questions & Answers for Success

Master Class 7 Science: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 Social Science: Engaging Questions & Answers for Success

Trending doubts
The value of 6 more than 7 is A 1 B 1 C 13 D 13 class 7 maths CBSE

Convert 200 Million dollars in rupees class 7 maths CBSE

List of coprime numbers from 1 to 100 class 7 maths CBSE

AIM To prepare stained temporary mount of onion peel class 7 biology CBSE

The plural of Chief is Chieves A True B False class 7 english CBSE

Write a letter to the editor of the national daily class 7 english CBSE


