
\[A\] and \[B\] are two square matrices, such that \[{A^2}B = BA\] and \[{\left( {AB} \right)^{10}} = {A^k} \cdot {B^{10}}\]. Find the value of \[k - 1020\].
Answer
562.5k+ views
Hint: Here, we will use the given information to find the values of \[{\left( {AB} \right)^1}\], \[{\left( {AB} \right)^2}\], and \[{\left( {AB} \right)^3}\] in terms of \[A\] and \[B\]. Then, rewriting the three equations, we will form a general formula for \[{\left( {AB} \right)^n}\]. Then, we will use the generalised formula and the given information to find the value of \[k\]. Finally, we will use the value of \[k\] to simplify the expression \[k - 1020\], and hence, obtain the required value.
Complete step-by-step answer:
First, we will find the value of \[{\left( {AB} \right)^1}\].
Rewriting the expression, we get
\[ \Rightarrow {\left( {AB} \right)^1} = {A^1}{B^1}\]
Rewriting 1 as \[2 - 1\], we get
\[ \Rightarrow {\left( {AB} \right)^1} = {A^{2 - 1}}{B^1}\]
We know that any number raised to power 1 is equal to itself.
Rewriting 2 as \[{2^1}\], we get
\[ \Rightarrow {\left( {AB} \right)^1} = {A^{{2^1} - 1}}{B^1} \ldots \ldots \ldots \left( 1 \right)\]
Now, we will find the value of \[{\left( {AB} \right)^2}\].
Rewriting the expression, we get
\[ \Rightarrow {\left( {AB} \right)^2} = \left( {AB} \right)\left( {AB} \right)\]
Removing the parentheses, we get
\[ \Rightarrow {\left( {AB} \right)^2} = ABAB\]
Enclosing \[BA\] in parentheses, we get
\[ \Rightarrow {\left( {AB} \right)^2} = A\left( {BA} \right)B\]
It is given that \[{A^2}B = BA\].
Substituting \[BA = {A^2}B\] in the equation, we get
\[ \Rightarrow {\left( {AB} \right)^2} = A\left( {{A^2}B} \right)B\]
Simplifying the expression, we get
\[\Rightarrow {\left( {AB} \right)^2} = A{A^2}BB \\
\Rightarrow {\left( {AB} \right)^2} = {A^3}{B^2} \ldots \ldots \ldots \left( 2 \right) \\\]
Rewriting 3 as \[4 - 1\], we get
\[ \Rightarrow {\left( {AB} \right)^2} = {A^{4 - 1}}{B^2}\]
The number 4 is the square of 2.
Rewriting 4 as \[{2^2}\], we get
\[ \Rightarrow {\left( {AB} \right)^2} = {A^{{2^2} - 1}}{B^2} \ldots \ldots \ldots \left( 3 \right)\]
Next, we will find the value of \[{\left( {AB} \right)^3}\].
Rewriting the expression, we get
\[\Rightarrow {\left( {AB} \right)^3} = \left( {AB} \right)\left( {AB} \right)\left( {AB} \right) \\
\Rightarrow {\left( {AB} \right)^3} = {\left( {AB} \right)^2}\left( {AB} \right) \\\]
Substituting \[{\left( {AB} \right)^2} = {A^3}{B^2}\] from equation \[\left( 2 \right)\], we get
\[ \Rightarrow {\left( {AB} \right)^3} = \left( {{A^3}{B^2}} \right)\left( {AB} \right)\]
Removing the parentheses, we get
\[ \Rightarrow {\left( {AB} \right)^3} = {A^3}{B^2}AB\]
Rewriting \[{B^2}\] as \[BB\], we get
\[ \Rightarrow {\left( {AB} \right)^3} = {A^3}BBAB\]
Enclosing \[BA\] in parentheses, we get
\[ \Rightarrow {\left( {AB} \right)^3} = {A^3}B\left( {BA} \right)B\]
Substituting \[BA = {A^2}B\] in the equation, we get
\[ \Rightarrow {\left( {AB} \right)^3} = {A^3}B\left( {{A^2}B} \right)B\]
Removing the parentheses, we get
\[ \Rightarrow {\left( {AB} \right)^3} = {A^3}B{A^2}BB\]
Rewriting \[{A^2}\] as \[AA\], we get
\[ \Rightarrow {\left( {AB} \right)^3} = {A^3}BAABB\]
Enclosing \[BA\] in parentheses, we get
\[ \Rightarrow {\left( {AB} \right)^3} = {A^3}\left( {BA} \right)ABB\]
Substituting \[BA = {A^2}B\] in the equation, we get
\[ \Rightarrow {\left( {AB} \right)^3} = {A^3}\left( {{A^2}B} \right)ABB\]
Removing the parentheses, we get
\[ \Rightarrow {\left( {AB} \right)^3} = {A^3}{A^2}BABB\]
Enclosing \[BA\] in parentheses, we get
\[ \Rightarrow {\left( {AB} \right)^3} = {A^3}{A^2}\left( {BA} \right)BB\]
Substituting \[BA = {A^2}B\] in the equation, we get
\[ \Rightarrow {\left( {AB} \right)^3} = {A^3}{A^2}\left( {{A^2}B} \right)BB\]
Removing the parentheses, we get
\[ \Rightarrow {\left( {AB} \right)^3} = {A^3}{A^2}{A^2}BBB\]
Simplifying the expression, we get
\[ \Rightarrow {\left( {AB} \right)^3} = {A^7}{B^3}\]
Rewriting 7 as \[8 - 1\], we get
\[ \Rightarrow {\left( {AB} \right)^3} = {A^{8 - 1}}{B^3}\]
The number 8 is the cube of 2.
Rewriting 8 as \[{2^3}\], we get
\[ \Rightarrow {\left( {AB} \right)^3} = {A^{{2^3} - 1}}{B^3} \ldots \ldots \ldots \left( 4 \right)\]
Now, we will observe and generalise the equations formed.
From equations \[\left( 1 \right)\], \[\left( 3 \right)\], and \[\left( 4 \right)\], we have
\[{\left( {AB} \right)^1} = {A^{{2^1} - 1}}{B^1}\]
\[{\left( {AB} \right)^2} = {A^{{2^2} - 1}}{B^2}\]
\[{\left( {AB} \right)^3} = {A^{{2^3} - 1}}{B^3}\]
We can generalise the above to form a general formula for \[{\left( {AB} \right)^n}\].
Thus, we get
\[{\left( {AB} \right)^n} = {A^{{2^n} - 1}}{B^n}\] where \[n\] is a natural number
Now, we will find the value of \[{\left( {AB} \right)^{10}}\].
Substituting \[n = 10\] in the generalised formula \[{\left( {AB} \right)^n} = {A^{{2^n} - 1}}{B^n}\], we get
\[ \Rightarrow {\left( {AB} \right)^{10}} = {A^{{2^{10}} - 1}}{B^{10}}\]
It is given that \[{\left( {AB} \right)^{10}} = {A^k} \cdot {B^{10}}\].
Therefore, substituting \[{\left( {AB} \right)^{10}} = {A^k} \cdot {B^{10}}\] in the equation \[{\left( {AB} \right)^{10}} = {A^{{2^{10}} - 1}}{B^{10}}\], we get
\[ \Rightarrow {A^k} \cdot {B^{10}} = {A^{{2^{10}} - 1}}{B^{10}}\]
Comparing the terms of the equations, we get
\[\Rightarrow {A^k} = {A^{{2^{10}} - 1}} \\
\Rightarrow k = {2^{10}} - 1 \\\]
Applying the exponent on the base, we get
\[ \Rightarrow k = 1024 - 1 = 1023\]
\[\therefore \] We get the value of \[k\] as 1023.
Finally, we will find the value of the expression \[k - 1020\].
Substituting \[k = 1023\] in the expression, we get
\[ \Rightarrow k - 1020 = 1023 - 1020\]
Thus, we get
\[ \Rightarrow k - 1020 = 3\]
\[\therefore \] We get the value of the expression \[k - 1020\] as 3.
Note: Here we are provided with matrices \[A\] and \[B\], and matrix multiplication is not commutative. This is why we cannot write \[AB\] as \[BA\] while simplifying the values of \[{\left( {AB} \right)^2}\] and \[{\left( {AB} \right)^3}\].
Complete step-by-step answer:
First, we will find the value of \[{\left( {AB} \right)^1}\].
Rewriting the expression, we get
\[ \Rightarrow {\left( {AB} \right)^1} = {A^1}{B^1}\]
Rewriting 1 as \[2 - 1\], we get
\[ \Rightarrow {\left( {AB} \right)^1} = {A^{2 - 1}}{B^1}\]
We know that any number raised to power 1 is equal to itself.
Rewriting 2 as \[{2^1}\], we get
\[ \Rightarrow {\left( {AB} \right)^1} = {A^{{2^1} - 1}}{B^1} \ldots \ldots \ldots \left( 1 \right)\]
Now, we will find the value of \[{\left( {AB} \right)^2}\].
Rewriting the expression, we get
\[ \Rightarrow {\left( {AB} \right)^2} = \left( {AB} \right)\left( {AB} \right)\]
Removing the parentheses, we get
\[ \Rightarrow {\left( {AB} \right)^2} = ABAB\]
Enclosing \[BA\] in parentheses, we get
\[ \Rightarrow {\left( {AB} \right)^2} = A\left( {BA} \right)B\]
It is given that \[{A^2}B = BA\].
Substituting \[BA = {A^2}B\] in the equation, we get
\[ \Rightarrow {\left( {AB} \right)^2} = A\left( {{A^2}B} \right)B\]
Simplifying the expression, we get
\[\Rightarrow {\left( {AB} \right)^2} = A{A^2}BB \\
\Rightarrow {\left( {AB} \right)^2} = {A^3}{B^2} \ldots \ldots \ldots \left( 2 \right) \\\]
Rewriting 3 as \[4 - 1\], we get
\[ \Rightarrow {\left( {AB} \right)^2} = {A^{4 - 1}}{B^2}\]
The number 4 is the square of 2.
Rewriting 4 as \[{2^2}\], we get
\[ \Rightarrow {\left( {AB} \right)^2} = {A^{{2^2} - 1}}{B^2} \ldots \ldots \ldots \left( 3 \right)\]
Next, we will find the value of \[{\left( {AB} \right)^3}\].
Rewriting the expression, we get
\[\Rightarrow {\left( {AB} \right)^3} = \left( {AB} \right)\left( {AB} \right)\left( {AB} \right) \\
\Rightarrow {\left( {AB} \right)^3} = {\left( {AB} \right)^2}\left( {AB} \right) \\\]
Substituting \[{\left( {AB} \right)^2} = {A^3}{B^2}\] from equation \[\left( 2 \right)\], we get
\[ \Rightarrow {\left( {AB} \right)^3} = \left( {{A^3}{B^2}} \right)\left( {AB} \right)\]
Removing the parentheses, we get
\[ \Rightarrow {\left( {AB} \right)^3} = {A^3}{B^2}AB\]
Rewriting \[{B^2}\] as \[BB\], we get
\[ \Rightarrow {\left( {AB} \right)^3} = {A^3}BBAB\]
Enclosing \[BA\] in parentheses, we get
\[ \Rightarrow {\left( {AB} \right)^3} = {A^3}B\left( {BA} \right)B\]
Substituting \[BA = {A^2}B\] in the equation, we get
\[ \Rightarrow {\left( {AB} \right)^3} = {A^3}B\left( {{A^2}B} \right)B\]
Removing the parentheses, we get
\[ \Rightarrow {\left( {AB} \right)^3} = {A^3}B{A^2}BB\]
Rewriting \[{A^2}\] as \[AA\], we get
\[ \Rightarrow {\left( {AB} \right)^3} = {A^3}BAABB\]
Enclosing \[BA\] in parentheses, we get
\[ \Rightarrow {\left( {AB} \right)^3} = {A^3}\left( {BA} \right)ABB\]
Substituting \[BA = {A^2}B\] in the equation, we get
\[ \Rightarrow {\left( {AB} \right)^3} = {A^3}\left( {{A^2}B} \right)ABB\]
Removing the parentheses, we get
\[ \Rightarrow {\left( {AB} \right)^3} = {A^3}{A^2}BABB\]
Enclosing \[BA\] in parentheses, we get
\[ \Rightarrow {\left( {AB} \right)^3} = {A^3}{A^2}\left( {BA} \right)BB\]
Substituting \[BA = {A^2}B\] in the equation, we get
\[ \Rightarrow {\left( {AB} \right)^3} = {A^3}{A^2}\left( {{A^2}B} \right)BB\]
Removing the parentheses, we get
\[ \Rightarrow {\left( {AB} \right)^3} = {A^3}{A^2}{A^2}BBB\]
Simplifying the expression, we get
\[ \Rightarrow {\left( {AB} \right)^3} = {A^7}{B^3}\]
Rewriting 7 as \[8 - 1\], we get
\[ \Rightarrow {\left( {AB} \right)^3} = {A^{8 - 1}}{B^3}\]
The number 8 is the cube of 2.
Rewriting 8 as \[{2^3}\], we get
\[ \Rightarrow {\left( {AB} \right)^3} = {A^{{2^3} - 1}}{B^3} \ldots \ldots \ldots \left( 4 \right)\]
Now, we will observe and generalise the equations formed.
From equations \[\left( 1 \right)\], \[\left( 3 \right)\], and \[\left( 4 \right)\], we have
\[{\left( {AB} \right)^1} = {A^{{2^1} - 1}}{B^1}\]
\[{\left( {AB} \right)^2} = {A^{{2^2} - 1}}{B^2}\]
\[{\left( {AB} \right)^3} = {A^{{2^3} - 1}}{B^3}\]
We can generalise the above to form a general formula for \[{\left( {AB} \right)^n}\].
Thus, we get
\[{\left( {AB} \right)^n} = {A^{{2^n} - 1}}{B^n}\] where \[n\] is a natural number
Now, we will find the value of \[{\left( {AB} \right)^{10}}\].
Substituting \[n = 10\] in the generalised formula \[{\left( {AB} \right)^n} = {A^{{2^n} - 1}}{B^n}\], we get
\[ \Rightarrow {\left( {AB} \right)^{10}} = {A^{{2^{10}} - 1}}{B^{10}}\]
It is given that \[{\left( {AB} \right)^{10}} = {A^k} \cdot {B^{10}}\].
Therefore, substituting \[{\left( {AB} \right)^{10}} = {A^k} \cdot {B^{10}}\] in the equation \[{\left( {AB} \right)^{10}} = {A^{{2^{10}} - 1}}{B^{10}}\], we get
\[ \Rightarrow {A^k} \cdot {B^{10}} = {A^{{2^{10}} - 1}}{B^{10}}\]
Comparing the terms of the equations, we get
\[\Rightarrow {A^k} = {A^{{2^{10}} - 1}} \\
\Rightarrow k = {2^{10}} - 1 \\\]
Applying the exponent on the base, we get
\[ \Rightarrow k = 1024 - 1 = 1023\]
\[\therefore \] We get the value of \[k\] as 1023.
Finally, we will find the value of the expression \[k - 1020\].
Substituting \[k = 1023\] in the expression, we get
\[ \Rightarrow k - 1020 = 1023 - 1020\]
Thus, we get
\[ \Rightarrow k - 1020 = 3\]
\[\therefore \] We get the value of the expression \[k - 1020\] as 3.
Note: Here we are provided with matrices \[A\] and \[B\], and matrix multiplication is not commutative. This is why we cannot write \[AB\] as \[BA\] while simplifying the values of \[{\left( {AB} \right)^2}\] and \[{\left( {AB} \right)^3}\].
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

