
\[A\] and \[B\] are two square matrices, such that \[{A^2}B = BA\] and \[{\left( {AB} \right)^{10}} = {A^k} \cdot {B^{10}}\]. Find the value of \[k - 1020\].
Answer
567.3k+ views
Hint: Here, we will use the given information to find the values of \[{\left( {AB} \right)^1}\], \[{\left( {AB} \right)^2}\], and \[{\left( {AB} \right)^3}\] in terms of \[A\] and \[B\]. Then, rewriting the three equations, we will form a general formula for \[{\left( {AB} \right)^n}\]. Then, we will use the generalised formula and the given information to find the value of \[k\]. Finally, we will use the value of \[k\] to simplify the expression \[k - 1020\], and hence, obtain the required value.
Complete step-by-step answer:
First, we will find the value of \[{\left( {AB} \right)^1}\].
Rewriting the expression, we get
\[ \Rightarrow {\left( {AB} \right)^1} = {A^1}{B^1}\]
Rewriting 1 as \[2 - 1\], we get
\[ \Rightarrow {\left( {AB} \right)^1} = {A^{2 - 1}}{B^1}\]
We know that any number raised to power 1 is equal to itself.
Rewriting 2 as \[{2^1}\], we get
\[ \Rightarrow {\left( {AB} \right)^1} = {A^{{2^1} - 1}}{B^1} \ldots \ldots \ldots \left( 1 \right)\]
Now, we will find the value of \[{\left( {AB} \right)^2}\].
Rewriting the expression, we get
\[ \Rightarrow {\left( {AB} \right)^2} = \left( {AB} \right)\left( {AB} \right)\]
Removing the parentheses, we get
\[ \Rightarrow {\left( {AB} \right)^2} = ABAB\]
Enclosing \[BA\] in parentheses, we get
\[ \Rightarrow {\left( {AB} \right)^2} = A\left( {BA} \right)B\]
It is given that \[{A^2}B = BA\].
Substituting \[BA = {A^2}B\] in the equation, we get
\[ \Rightarrow {\left( {AB} \right)^2} = A\left( {{A^2}B} \right)B\]
Simplifying the expression, we get
\[\Rightarrow {\left( {AB} \right)^2} = A{A^2}BB \\
\Rightarrow {\left( {AB} \right)^2} = {A^3}{B^2} \ldots \ldots \ldots \left( 2 \right) \\\]
Rewriting 3 as \[4 - 1\], we get
\[ \Rightarrow {\left( {AB} \right)^2} = {A^{4 - 1}}{B^2}\]
The number 4 is the square of 2.
Rewriting 4 as \[{2^2}\], we get
\[ \Rightarrow {\left( {AB} \right)^2} = {A^{{2^2} - 1}}{B^2} \ldots \ldots \ldots \left( 3 \right)\]
Next, we will find the value of \[{\left( {AB} \right)^3}\].
Rewriting the expression, we get
\[\Rightarrow {\left( {AB} \right)^3} = \left( {AB} \right)\left( {AB} \right)\left( {AB} \right) \\
\Rightarrow {\left( {AB} \right)^3} = {\left( {AB} \right)^2}\left( {AB} \right) \\\]
Substituting \[{\left( {AB} \right)^2} = {A^3}{B^2}\] from equation \[\left( 2 \right)\], we get
\[ \Rightarrow {\left( {AB} \right)^3} = \left( {{A^3}{B^2}} \right)\left( {AB} \right)\]
Removing the parentheses, we get
\[ \Rightarrow {\left( {AB} \right)^3} = {A^3}{B^2}AB\]
Rewriting \[{B^2}\] as \[BB\], we get
\[ \Rightarrow {\left( {AB} \right)^3} = {A^3}BBAB\]
Enclosing \[BA\] in parentheses, we get
\[ \Rightarrow {\left( {AB} \right)^3} = {A^3}B\left( {BA} \right)B\]
Substituting \[BA = {A^2}B\] in the equation, we get
\[ \Rightarrow {\left( {AB} \right)^3} = {A^3}B\left( {{A^2}B} \right)B\]
Removing the parentheses, we get
\[ \Rightarrow {\left( {AB} \right)^3} = {A^3}B{A^2}BB\]
Rewriting \[{A^2}\] as \[AA\], we get
\[ \Rightarrow {\left( {AB} \right)^3} = {A^3}BAABB\]
Enclosing \[BA\] in parentheses, we get
\[ \Rightarrow {\left( {AB} \right)^3} = {A^3}\left( {BA} \right)ABB\]
Substituting \[BA = {A^2}B\] in the equation, we get
\[ \Rightarrow {\left( {AB} \right)^3} = {A^3}\left( {{A^2}B} \right)ABB\]
Removing the parentheses, we get
\[ \Rightarrow {\left( {AB} \right)^3} = {A^3}{A^2}BABB\]
Enclosing \[BA\] in parentheses, we get
\[ \Rightarrow {\left( {AB} \right)^3} = {A^3}{A^2}\left( {BA} \right)BB\]
Substituting \[BA = {A^2}B\] in the equation, we get
\[ \Rightarrow {\left( {AB} \right)^3} = {A^3}{A^2}\left( {{A^2}B} \right)BB\]
Removing the parentheses, we get
\[ \Rightarrow {\left( {AB} \right)^3} = {A^3}{A^2}{A^2}BBB\]
Simplifying the expression, we get
\[ \Rightarrow {\left( {AB} \right)^3} = {A^7}{B^3}\]
Rewriting 7 as \[8 - 1\], we get
\[ \Rightarrow {\left( {AB} \right)^3} = {A^{8 - 1}}{B^3}\]
The number 8 is the cube of 2.
Rewriting 8 as \[{2^3}\], we get
\[ \Rightarrow {\left( {AB} \right)^3} = {A^{{2^3} - 1}}{B^3} \ldots \ldots \ldots \left( 4 \right)\]
Now, we will observe and generalise the equations formed.
From equations \[\left( 1 \right)\], \[\left( 3 \right)\], and \[\left( 4 \right)\], we have
\[{\left( {AB} \right)^1} = {A^{{2^1} - 1}}{B^1}\]
\[{\left( {AB} \right)^2} = {A^{{2^2} - 1}}{B^2}\]
\[{\left( {AB} \right)^3} = {A^{{2^3} - 1}}{B^3}\]
We can generalise the above to form a general formula for \[{\left( {AB} \right)^n}\].
Thus, we get
\[{\left( {AB} \right)^n} = {A^{{2^n} - 1}}{B^n}\] where \[n\] is a natural number
Now, we will find the value of \[{\left( {AB} \right)^{10}}\].
Substituting \[n = 10\] in the generalised formula \[{\left( {AB} \right)^n} = {A^{{2^n} - 1}}{B^n}\], we get
\[ \Rightarrow {\left( {AB} \right)^{10}} = {A^{{2^{10}} - 1}}{B^{10}}\]
It is given that \[{\left( {AB} \right)^{10}} = {A^k} \cdot {B^{10}}\].
Therefore, substituting \[{\left( {AB} \right)^{10}} = {A^k} \cdot {B^{10}}\] in the equation \[{\left( {AB} \right)^{10}} = {A^{{2^{10}} - 1}}{B^{10}}\], we get
\[ \Rightarrow {A^k} \cdot {B^{10}} = {A^{{2^{10}} - 1}}{B^{10}}\]
Comparing the terms of the equations, we get
\[\Rightarrow {A^k} = {A^{{2^{10}} - 1}} \\
\Rightarrow k = {2^{10}} - 1 \\\]
Applying the exponent on the base, we get
\[ \Rightarrow k = 1024 - 1 = 1023\]
\[\therefore \] We get the value of \[k\] as 1023.
Finally, we will find the value of the expression \[k - 1020\].
Substituting \[k = 1023\] in the expression, we get
\[ \Rightarrow k - 1020 = 1023 - 1020\]
Thus, we get
\[ \Rightarrow k - 1020 = 3\]
\[\therefore \] We get the value of the expression \[k - 1020\] as 3.
Note: Here we are provided with matrices \[A\] and \[B\], and matrix multiplication is not commutative. This is why we cannot write \[AB\] as \[BA\] while simplifying the values of \[{\left( {AB} \right)^2}\] and \[{\left( {AB} \right)^3}\].
Complete step-by-step answer:
First, we will find the value of \[{\left( {AB} \right)^1}\].
Rewriting the expression, we get
\[ \Rightarrow {\left( {AB} \right)^1} = {A^1}{B^1}\]
Rewriting 1 as \[2 - 1\], we get
\[ \Rightarrow {\left( {AB} \right)^1} = {A^{2 - 1}}{B^1}\]
We know that any number raised to power 1 is equal to itself.
Rewriting 2 as \[{2^1}\], we get
\[ \Rightarrow {\left( {AB} \right)^1} = {A^{{2^1} - 1}}{B^1} \ldots \ldots \ldots \left( 1 \right)\]
Now, we will find the value of \[{\left( {AB} \right)^2}\].
Rewriting the expression, we get
\[ \Rightarrow {\left( {AB} \right)^2} = \left( {AB} \right)\left( {AB} \right)\]
Removing the parentheses, we get
\[ \Rightarrow {\left( {AB} \right)^2} = ABAB\]
Enclosing \[BA\] in parentheses, we get
\[ \Rightarrow {\left( {AB} \right)^2} = A\left( {BA} \right)B\]
It is given that \[{A^2}B = BA\].
Substituting \[BA = {A^2}B\] in the equation, we get
\[ \Rightarrow {\left( {AB} \right)^2} = A\left( {{A^2}B} \right)B\]
Simplifying the expression, we get
\[\Rightarrow {\left( {AB} \right)^2} = A{A^2}BB \\
\Rightarrow {\left( {AB} \right)^2} = {A^3}{B^2} \ldots \ldots \ldots \left( 2 \right) \\\]
Rewriting 3 as \[4 - 1\], we get
\[ \Rightarrow {\left( {AB} \right)^2} = {A^{4 - 1}}{B^2}\]
The number 4 is the square of 2.
Rewriting 4 as \[{2^2}\], we get
\[ \Rightarrow {\left( {AB} \right)^2} = {A^{{2^2} - 1}}{B^2} \ldots \ldots \ldots \left( 3 \right)\]
Next, we will find the value of \[{\left( {AB} \right)^3}\].
Rewriting the expression, we get
\[\Rightarrow {\left( {AB} \right)^3} = \left( {AB} \right)\left( {AB} \right)\left( {AB} \right) \\
\Rightarrow {\left( {AB} \right)^3} = {\left( {AB} \right)^2}\left( {AB} \right) \\\]
Substituting \[{\left( {AB} \right)^2} = {A^3}{B^2}\] from equation \[\left( 2 \right)\], we get
\[ \Rightarrow {\left( {AB} \right)^3} = \left( {{A^3}{B^2}} \right)\left( {AB} \right)\]
Removing the parentheses, we get
\[ \Rightarrow {\left( {AB} \right)^3} = {A^3}{B^2}AB\]
Rewriting \[{B^2}\] as \[BB\], we get
\[ \Rightarrow {\left( {AB} \right)^3} = {A^3}BBAB\]
Enclosing \[BA\] in parentheses, we get
\[ \Rightarrow {\left( {AB} \right)^3} = {A^3}B\left( {BA} \right)B\]
Substituting \[BA = {A^2}B\] in the equation, we get
\[ \Rightarrow {\left( {AB} \right)^3} = {A^3}B\left( {{A^2}B} \right)B\]
Removing the parentheses, we get
\[ \Rightarrow {\left( {AB} \right)^3} = {A^3}B{A^2}BB\]
Rewriting \[{A^2}\] as \[AA\], we get
\[ \Rightarrow {\left( {AB} \right)^3} = {A^3}BAABB\]
Enclosing \[BA\] in parentheses, we get
\[ \Rightarrow {\left( {AB} \right)^3} = {A^3}\left( {BA} \right)ABB\]
Substituting \[BA = {A^2}B\] in the equation, we get
\[ \Rightarrow {\left( {AB} \right)^3} = {A^3}\left( {{A^2}B} \right)ABB\]
Removing the parentheses, we get
\[ \Rightarrow {\left( {AB} \right)^3} = {A^3}{A^2}BABB\]
Enclosing \[BA\] in parentheses, we get
\[ \Rightarrow {\left( {AB} \right)^3} = {A^3}{A^2}\left( {BA} \right)BB\]
Substituting \[BA = {A^2}B\] in the equation, we get
\[ \Rightarrow {\left( {AB} \right)^3} = {A^3}{A^2}\left( {{A^2}B} \right)BB\]
Removing the parentheses, we get
\[ \Rightarrow {\left( {AB} \right)^3} = {A^3}{A^2}{A^2}BBB\]
Simplifying the expression, we get
\[ \Rightarrow {\left( {AB} \right)^3} = {A^7}{B^3}\]
Rewriting 7 as \[8 - 1\], we get
\[ \Rightarrow {\left( {AB} \right)^3} = {A^{8 - 1}}{B^3}\]
The number 8 is the cube of 2.
Rewriting 8 as \[{2^3}\], we get
\[ \Rightarrow {\left( {AB} \right)^3} = {A^{{2^3} - 1}}{B^3} \ldots \ldots \ldots \left( 4 \right)\]
Now, we will observe and generalise the equations formed.
From equations \[\left( 1 \right)\], \[\left( 3 \right)\], and \[\left( 4 \right)\], we have
\[{\left( {AB} \right)^1} = {A^{{2^1} - 1}}{B^1}\]
\[{\left( {AB} \right)^2} = {A^{{2^2} - 1}}{B^2}\]
\[{\left( {AB} \right)^3} = {A^{{2^3} - 1}}{B^3}\]
We can generalise the above to form a general formula for \[{\left( {AB} \right)^n}\].
Thus, we get
\[{\left( {AB} \right)^n} = {A^{{2^n} - 1}}{B^n}\] where \[n\] is a natural number
Now, we will find the value of \[{\left( {AB} \right)^{10}}\].
Substituting \[n = 10\] in the generalised formula \[{\left( {AB} \right)^n} = {A^{{2^n} - 1}}{B^n}\], we get
\[ \Rightarrow {\left( {AB} \right)^{10}} = {A^{{2^{10}} - 1}}{B^{10}}\]
It is given that \[{\left( {AB} \right)^{10}} = {A^k} \cdot {B^{10}}\].
Therefore, substituting \[{\left( {AB} \right)^{10}} = {A^k} \cdot {B^{10}}\] in the equation \[{\left( {AB} \right)^{10}} = {A^{{2^{10}} - 1}}{B^{10}}\], we get
\[ \Rightarrow {A^k} \cdot {B^{10}} = {A^{{2^{10}} - 1}}{B^{10}}\]
Comparing the terms of the equations, we get
\[\Rightarrow {A^k} = {A^{{2^{10}} - 1}} \\
\Rightarrow k = {2^{10}} - 1 \\\]
Applying the exponent on the base, we get
\[ \Rightarrow k = 1024 - 1 = 1023\]
\[\therefore \] We get the value of \[k\] as 1023.
Finally, we will find the value of the expression \[k - 1020\].
Substituting \[k = 1023\] in the expression, we get
\[ \Rightarrow k - 1020 = 1023 - 1020\]
Thus, we get
\[ \Rightarrow k - 1020 = 3\]
\[\therefore \] We get the value of the expression \[k - 1020\] as 3.
Note: Here we are provided with matrices \[A\] and \[B\], and matrix multiplication is not commutative. This is why we cannot write \[AB\] as \[BA\] while simplifying the values of \[{\left( {AB} \right)^2}\] and \[{\left( {AB} \right)^3}\].
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

