
$A$ and $B$ are two events such that $P\left( A \right)=0.54,P\left( B \right)=0.69\text{ and }P\left( A\cap B \right)=0.35$, now find the value of the following:
A. $P\left( A'\cap B' \right)$
B. $P\left( B\cap A' \right)$
Answer
585.9k+ views
Hint:To solve these types of questions and we will apply the De morgan’s law for the first part that is $\left( A\cup B \right)'=A'\cap B'$ and again apply the formula for expanding the union of set that is $\left( A\cup B \right)=A+B-\left( A\cap B \right)$. Then for the second part, we will apply the set property that is : $\left( B\cap A' \right)=B-\left( A\cap B \right)$ and then we will put the values from the question and get the answer.
Complete step by step answer:
We are given that: $P\left( A \right)=0.54,P\left( B \right)=0.69\text{ and }P\left( A\cap B \right)=0.35$ , now for the first part that is : $P\left( A'\cap B' \right)$.
Now, according the Demorgan’s law that is the complement of the union of two sets $A\text{ and }B$ is equal to the intersection of the complement of the sets $A\text{ and }B$ : $\left( A\cup B \right)'=A'\cap B'$ , where $A'=\left\{ x:x\in \bigcup \text{ and }x\notin A \right\}$ , where $A'$ denotes the complement.
Now, we have $P\left( A'\cap B' \right)$, so by Demorgan law, we have:
\[\begin{align}
& \Rightarrow P\left( A'\cap B' \right)=P\left( A\cup B \right)' \\
& \Rightarrow P\left( A'\cap B' \right)=1-P\left( A\cup B \right) \\
\end{align}\]
Now, we know that the union of set is equal to the following: $\left( A\cup B \right)=A+B-\left( A\cap B \right)$ , therefore:
\[\Rightarrow P\left( A'\cap B' \right)=1-P\left( A\cup B \right)=1-\left( P\left( A \right)+P\left( B \right)-P\left( A\cap B \right) \right)\text{ }.......\text{Equation 1}\] ,
We have, $P\left( A \right)=0.54,P\left( B \right)=0.69\text{ and }P\left( A\cap B \right)=0.35$, we will now put these values in equation 1 :
\[\begin{align}
& \Rightarrow P\left( A'\cap B' \right)=1-P\left( A\cup B \right)=1-\left( P\left( A \right)+P\left( B \right)-P\left( A\cap B \right) \right)\text{ } \\
& \Rightarrow P\left( A'\cap B' \right)=1-P\left( A\cup B \right)=1-\left( 0.54+0.69-0.35 \right) \\
& \Rightarrow P\left( A'\cap B' \right)=1-P\left( A\cup B \right)=1-0.88 \\
& \Rightarrow P\left( A'\cap B' \right)=0.12 \\
\end{align}\]
Now, we will consider the second part of the question that is: $P\left( B\cap A' \right)$ ,
Now, we know that: $\left( B\cap A' \right)=B-\left( A\cap B \right)$ ,
So, therefore: $P\left( B\cap A' \right)=P\left( B \right)-P\left( A\cap B \right)\text{ }........\text{Equation 2}$
We have, $P\left( B \right)=0.69\text{ and }P\left( A\cap B \right)=0.35$, we will now put these values in equation 2:
$\begin{align}
& \Rightarrow P\left( B\cap A' \right)=P\left( B \right)-P\left( A\cap B \right) \\
& \Rightarrow P\left( B\cap A' \right)=0.69-0.35 \\
& \Rightarrow P\left( B\cap A' \right)=0.34 \\
\end{align}$
Hence, the answer is:
$\begin{align}
& \Rightarrow P\left( A'\cap B' \right)=0.12 \\
& \Rightarrow P\left( B\cap A' \right)=0.34 \\
\end{align}$
Note:
Although the calculations are easy in these types of questions students can make mistakes while applying the formulas. For example, let’s say a student writes the formula wrong for\[P\left( A'\cap B' \right)\] as $P\left( A'\cap B' \right)=P\left( A' \right)\cap P\left( B' \right)$, this will give us: $P\left( A'\cap B' \right)=0.54-0.69=-0.15$ , which can’t be true as probability can’t be negative. So, one must know the formulas from the set theory. De Morgan laws can also be applied to other mathematical topics as well not only in probability theory.
Complete step by step answer:
We are given that: $P\left( A \right)=0.54,P\left( B \right)=0.69\text{ and }P\left( A\cap B \right)=0.35$ , now for the first part that is : $P\left( A'\cap B' \right)$.
Now, according the Demorgan’s law that is the complement of the union of two sets $A\text{ and }B$ is equal to the intersection of the complement of the sets $A\text{ and }B$ : $\left( A\cup B \right)'=A'\cap B'$ , where $A'=\left\{ x:x\in \bigcup \text{ and }x\notin A \right\}$ , where $A'$ denotes the complement.
Now, we have $P\left( A'\cap B' \right)$, so by Demorgan law, we have:
\[\begin{align}
& \Rightarrow P\left( A'\cap B' \right)=P\left( A\cup B \right)' \\
& \Rightarrow P\left( A'\cap B' \right)=1-P\left( A\cup B \right) \\
\end{align}\]
Now, we know that the union of set is equal to the following: $\left( A\cup B \right)=A+B-\left( A\cap B \right)$ , therefore:
\[\Rightarrow P\left( A'\cap B' \right)=1-P\left( A\cup B \right)=1-\left( P\left( A \right)+P\left( B \right)-P\left( A\cap B \right) \right)\text{ }.......\text{Equation 1}\] ,
We have, $P\left( A \right)=0.54,P\left( B \right)=0.69\text{ and }P\left( A\cap B \right)=0.35$, we will now put these values in equation 1 :
\[\begin{align}
& \Rightarrow P\left( A'\cap B' \right)=1-P\left( A\cup B \right)=1-\left( P\left( A \right)+P\left( B \right)-P\left( A\cap B \right) \right)\text{ } \\
& \Rightarrow P\left( A'\cap B' \right)=1-P\left( A\cup B \right)=1-\left( 0.54+0.69-0.35 \right) \\
& \Rightarrow P\left( A'\cap B' \right)=1-P\left( A\cup B \right)=1-0.88 \\
& \Rightarrow P\left( A'\cap B' \right)=0.12 \\
\end{align}\]
Now, we will consider the second part of the question that is: $P\left( B\cap A' \right)$ ,
Now, we know that: $\left( B\cap A' \right)=B-\left( A\cap B \right)$ ,
So, therefore: $P\left( B\cap A' \right)=P\left( B \right)-P\left( A\cap B \right)\text{ }........\text{Equation 2}$
We have, $P\left( B \right)=0.69\text{ and }P\left( A\cap B \right)=0.35$, we will now put these values in equation 2:
$\begin{align}
& \Rightarrow P\left( B\cap A' \right)=P\left( B \right)-P\left( A\cap B \right) \\
& \Rightarrow P\left( B\cap A' \right)=0.69-0.35 \\
& \Rightarrow P\left( B\cap A' \right)=0.34 \\
\end{align}$
Hence, the answer is:
$\begin{align}
& \Rightarrow P\left( A'\cap B' \right)=0.12 \\
& \Rightarrow P\left( B\cap A' \right)=0.34 \\
\end{align}$
Note:
Although the calculations are easy in these types of questions students can make mistakes while applying the formulas. For example, let’s say a student writes the formula wrong for\[P\left( A'\cap B' \right)\] as $P\left( A'\cap B' \right)=P\left( A' \right)\cap P\left( B' \right)$, this will give us: $P\left( A'\cap B' \right)=0.54-0.69=-0.15$ , which can’t be true as probability can’t be negative. So, one must know the formulas from the set theory. De Morgan laws can also be applied to other mathematical topics as well not only in probability theory.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Who gave "Inqilab Zindabad" slogan?

Who was Subhash Chandra Bose Why was he called Net class 10 english CBSE

What is Contraception List its four different methods class 10 biology CBSE

List out three methods of soil conservation

