Answer
Verified
427.2k+ views
Hint: The given problem is a work and time problem. We will use the unitary method to solve this problem. We are given the time consumed by A to finish a work and the time consumed by A and B together to finish the work. Using these given things we are asked to find the time consumed by B alone to finish the work. We will also introduce algebraic expressions to solve this problem.
Complete step-by-step answer:
A can do a piece of work in $ 8 $ days.
Let the work done by A in one day is $ \dfrac{1}{8} $ th of the work done.
A and B together can do the same work in 6 days.
So, the work done by A alone is $ 6 \times \dfrac{1}{8} $ of the total work.
$ 6 \times \dfrac{1}{8} = \dfrac{6}{8} $
Now the rest work be done by B let it be $ x $ .
So, $ \dfrac{6}{8} + x = 1 $
$ \Rightarrow x = 1 - \dfrac{6}{8} = \dfrac{2}{8} $
The work is for $ 6 $ days.
So, the actual work done by B for 1 day is $ \dfrac{1}{6} \times \dfrac{2}{8} = \dfrac{1}{{24}} $
Since, B takes $ 1 $ a day to complete $ \dfrac{1}{{24}} $ part of the work.
This means B takes $ 24 $ days to finish the work alone.
So, the correct answer is “$ 24 $”.
Note: The given problem is based upon a statement containing some information which we have used to find an algebraic expression. So, formulate the question properly to calculate the result. The result we are obtaining is for $ 6 $ days which we still have to calculate for one day and this can be done by multiplying the reciprocal of $ 6 $ in it.
Complete step-by-step answer:
A can do a piece of work in $ 8 $ days.
Let the work done by A in one day is $ \dfrac{1}{8} $ th of the work done.
A and B together can do the same work in 6 days.
So, the work done by A alone is $ 6 \times \dfrac{1}{8} $ of the total work.
$ 6 \times \dfrac{1}{8} = \dfrac{6}{8} $
Now the rest work be done by B let it be $ x $ .
So, $ \dfrac{6}{8} + x = 1 $
$ \Rightarrow x = 1 - \dfrac{6}{8} = \dfrac{2}{8} $
The work is for $ 6 $ days.
So, the actual work done by B for 1 day is $ \dfrac{1}{6} \times \dfrac{2}{8} = \dfrac{1}{{24}} $
Since, B takes $ 1 $ a day to complete $ \dfrac{1}{{24}} $ part of the work.
This means B takes $ 24 $ days to finish the work alone.
So, the correct answer is “$ 24 $”.
Note: The given problem is based upon a statement containing some information which we have used to find an algebraic expression. So, formulate the question properly to calculate the result. The result we are obtaining is for $ 6 $ days which we still have to calculate for one day and this can be done by multiplying the reciprocal of $ 6 $ in it.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE