
A 5% solution (w/w) of cane sugar (molar mass=342g) has freezing point 271K. What will be the freezing point of 5% glucose (molar mass= 180g) in water if the freezing point of pure water is 273.15K?
(A) 273.07K
(B) 268.07K
(C) 273.15K
(D) 260.09K
Answer
584.1k+ views
Hint: We will calculate the molal freezing constant (${{K}_{f}}$) for water using the relation ${{K}_{f}}=\dfrac{\Delta {{T}_{f}}}{m}$ and then we will calculate the freezing point of glucose using, ${{T}_{glu\cos e}}={{T}_{water}}-{{K}_{f}}\times m$.
\[{{T}_{water}}=273.15K\]
Complete step by step solution:
Let’s take case 1 and calculate the molal freezing constant (${{K}_{f}}$) for water using cane sugar
The formula for calculating ${{K}_{f}}$
\[{{K}_{f}}=\dfrac{\Delta {{T}_{f}}}{m}\]…….equation 1
Now, $\Delta {{T}_{f}}={{T}_{water}}-{{T}_{cane sugar}}$
\[\therefore ,\Delta {{T}_{f}}=273.15-271=2.15\]…..equation 2
Now, we will calculate the molality of cane sugar.
A 5% solution of cane sugar means 5g cane sugar is dissolved in 95g of water.
Therefore, given mass=5g
Molar mass=342g
Wt of solvent=95g
Formula for molality is:
\[m=\dfrac{{{m}_{solute}}\times 1000}{\begin{align}
& w{{t}_{solvent}} \\
& \\
\end{align}}\]
\[m=\dfrac{{{m}_{solute}}\times 1000}{\begin{align}
& w{{t}_{solvent}} \\
& \\
\end{align}}=\dfrac{5\times 1000}{342\times 95}\]
\[m=0.153\]…..equation 3
Where, ${{m}_{solute}}=\dfrac{Mas{{s}_{given}}}{MolarMass}=\dfrac{5}{342}$
Now, we will put the value of equation 2 and equation 3 in equation 1 and calculate ${{K}_{f}}$
Therefore, ${{K}_{f}}=\dfrac{2.15}{0.153}=14.05$…..equation 4
Now, let’s take case 2 and calculate the freezing point of 5% glucose
Now, we will calculate the molality of glucose.
A 5% solution of cane sugar means 5g glucose is dissolved in 95g of water.
Therefore given mass=5g
Molar mass=180g
Wt of solvent=95g
Formula for molality is:
\[m=\dfrac{{{m}_{solute}}\times 1000}{\begin{align}
& w{{t}_{solvent}} \\
& \\
\end{align}}\]
\[m=\dfrac{{{m}_{solute}}\times 1000}{\begin{align}
& w{{t}_{solvent}} \\
& \\
\end{align}}=\dfrac{5\times 1000}{180\times 95}\]……where, \[{{m}_{solute}}=\dfrac{Mas{{s}_{given}}}{MolarMass}=\dfrac{5}{180}\]
\[m=0.2923\]…..equation 5
Now, we will calculate the freezing point of glucose using the formula
\[\Delta {{T}_{f}}={{K}_{f}}\times m\]
\[\Delta {{T}_{f}}={{T}_{water}}-{{T}_{glu\cos e}}\]
Therefore, ${{T}_{glu\cos e}}={{T}_{water}}-{{K}_{f}}\times m$ …..equation 6
On putting the values of equation 4 and equation 5 in equation 6, we get
\[{{T}_{glu\cos e}}=\,273.15-14.05\times 0.2923\]
Therefore, ${{T}_{glu\cos e}}=269.04K$, Which is close to option (B).
So, the correct answer is “Option B”.
Note: Convert the temperatures into kelvin. Take weight of solution in Kilograms. Freezing point of a solute is always less than the freezing point of its solvent.
\[{{T}_{water}}=273.15K\]
Complete step by step solution:
Let’s take case 1 and calculate the molal freezing constant (${{K}_{f}}$) for water using cane sugar
The formula for calculating ${{K}_{f}}$
\[{{K}_{f}}=\dfrac{\Delta {{T}_{f}}}{m}\]…….equation 1
Now, $\Delta {{T}_{f}}={{T}_{water}}-{{T}_{cane sugar}}$
\[\therefore ,\Delta {{T}_{f}}=273.15-271=2.15\]…..equation 2
Now, we will calculate the molality of cane sugar.
A 5% solution of cane sugar means 5g cane sugar is dissolved in 95g of water.
Therefore, given mass=5g
Molar mass=342g
Wt of solvent=95g
Formula for molality is:
\[m=\dfrac{{{m}_{solute}}\times 1000}{\begin{align}
& w{{t}_{solvent}} \\
& \\
\end{align}}\]
\[m=\dfrac{{{m}_{solute}}\times 1000}{\begin{align}
& w{{t}_{solvent}} \\
& \\
\end{align}}=\dfrac{5\times 1000}{342\times 95}\]
\[m=0.153\]…..equation 3
Where, ${{m}_{solute}}=\dfrac{Mas{{s}_{given}}}{MolarMass}=\dfrac{5}{342}$
Now, we will put the value of equation 2 and equation 3 in equation 1 and calculate ${{K}_{f}}$
Therefore, ${{K}_{f}}=\dfrac{2.15}{0.153}=14.05$…..equation 4
Now, let’s take case 2 and calculate the freezing point of 5% glucose
Now, we will calculate the molality of glucose.
A 5% solution of cane sugar means 5g glucose is dissolved in 95g of water.
Therefore given mass=5g
Molar mass=180g
Wt of solvent=95g
Formula for molality is:
\[m=\dfrac{{{m}_{solute}}\times 1000}{\begin{align}
& w{{t}_{solvent}} \\
& \\
\end{align}}\]
\[m=\dfrac{{{m}_{solute}}\times 1000}{\begin{align}
& w{{t}_{solvent}} \\
& \\
\end{align}}=\dfrac{5\times 1000}{180\times 95}\]……where, \[{{m}_{solute}}=\dfrac{Mas{{s}_{given}}}{MolarMass}=\dfrac{5}{180}\]
\[m=0.2923\]…..equation 5
Now, we will calculate the freezing point of glucose using the formula
\[\Delta {{T}_{f}}={{K}_{f}}\times m\]
\[\Delta {{T}_{f}}={{T}_{water}}-{{T}_{glu\cos e}}\]
Therefore, ${{T}_{glu\cos e}}={{T}_{water}}-{{K}_{f}}\times m$ …..equation 6
On putting the values of equation 4 and equation 5 in equation 6, we get
\[{{T}_{glu\cos e}}=\,273.15-14.05\times 0.2923\]
Therefore, ${{T}_{glu\cos e}}=269.04K$, Which is close to option (B).
So, the correct answer is “Option B”.
Note: Convert the temperatures into kelvin. Take weight of solution in Kilograms. Freezing point of a solute is always less than the freezing point of its solvent.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

