
A 5% solution (w/w) of cane sugar (molar mass=342g) has freezing point 271K. What will be the freezing point of 5% glucose (molar mass= 180g) in water if the freezing point of pure water is 273.15K?
(A) 273.07K
(B) 268.07K
(C) 273.15K
(D) 260.09K
Answer
586.8k+ views
Hint: We will calculate the molal freezing constant (${{K}_{f}}$) for water using the relation ${{K}_{f}}=\dfrac{\Delta {{T}_{f}}}{m}$ and then we will calculate the freezing point of glucose using, ${{T}_{glu\cos e}}={{T}_{water}}-{{K}_{f}}\times m$.
\[{{T}_{water}}=273.15K\]
Complete step by step solution:
Let’s take case 1 and calculate the molal freezing constant (${{K}_{f}}$) for water using cane sugar
The formula for calculating ${{K}_{f}}$
\[{{K}_{f}}=\dfrac{\Delta {{T}_{f}}}{m}\]…….equation 1
Now, $\Delta {{T}_{f}}={{T}_{water}}-{{T}_{cane sugar}}$
\[\therefore ,\Delta {{T}_{f}}=273.15-271=2.15\]…..equation 2
Now, we will calculate the molality of cane sugar.
A 5% solution of cane sugar means 5g cane sugar is dissolved in 95g of water.
Therefore, given mass=5g
Molar mass=342g
Wt of solvent=95g
Formula for molality is:
\[m=\dfrac{{{m}_{solute}}\times 1000}{\begin{align}
& w{{t}_{solvent}} \\
& \\
\end{align}}\]
\[m=\dfrac{{{m}_{solute}}\times 1000}{\begin{align}
& w{{t}_{solvent}} \\
& \\
\end{align}}=\dfrac{5\times 1000}{342\times 95}\]
\[m=0.153\]…..equation 3
Where, ${{m}_{solute}}=\dfrac{Mas{{s}_{given}}}{MolarMass}=\dfrac{5}{342}$
Now, we will put the value of equation 2 and equation 3 in equation 1 and calculate ${{K}_{f}}$
Therefore, ${{K}_{f}}=\dfrac{2.15}{0.153}=14.05$…..equation 4
Now, let’s take case 2 and calculate the freezing point of 5% glucose
Now, we will calculate the molality of glucose.
A 5% solution of cane sugar means 5g glucose is dissolved in 95g of water.
Therefore given mass=5g
Molar mass=180g
Wt of solvent=95g
Formula for molality is:
\[m=\dfrac{{{m}_{solute}}\times 1000}{\begin{align}
& w{{t}_{solvent}} \\
& \\
\end{align}}\]
\[m=\dfrac{{{m}_{solute}}\times 1000}{\begin{align}
& w{{t}_{solvent}} \\
& \\
\end{align}}=\dfrac{5\times 1000}{180\times 95}\]……where, \[{{m}_{solute}}=\dfrac{Mas{{s}_{given}}}{MolarMass}=\dfrac{5}{180}\]
\[m=0.2923\]…..equation 5
Now, we will calculate the freezing point of glucose using the formula
\[\Delta {{T}_{f}}={{K}_{f}}\times m\]
\[\Delta {{T}_{f}}={{T}_{water}}-{{T}_{glu\cos e}}\]
Therefore, ${{T}_{glu\cos e}}={{T}_{water}}-{{K}_{f}}\times m$ …..equation 6
On putting the values of equation 4 and equation 5 in equation 6, we get
\[{{T}_{glu\cos e}}=\,273.15-14.05\times 0.2923\]
Therefore, ${{T}_{glu\cos e}}=269.04K$, Which is close to option (B).
So, the correct answer is “Option B”.
Note: Convert the temperatures into kelvin. Take weight of solution in Kilograms. Freezing point of a solute is always less than the freezing point of its solvent.
\[{{T}_{water}}=273.15K\]
Complete step by step solution:
Let’s take case 1 and calculate the molal freezing constant (${{K}_{f}}$) for water using cane sugar
The formula for calculating ${{K}_{f}}$
\[{{K}_{f}}=\dfrac{\Delta {{T}_{f}}}{m}\]…….equation 1
Now, $\Delta {{T}_{f}}={{T}_{water}}-{{T}_{cane sugar}}$
\[\therefore ,\Delta {{T}_{f}}=273.15-271=2.15\]…..equation 2
Now, we will calculate the molality of cane sugar.
A 5% solution of cane sugar means 5g cane sugar is dissolved in 95g of water.
Therefore, given mass=5g
Molar mass=342g
Wt of solvent=95g
Formula for molality is:
\[m=\dfrac{{{m}_{solute}}\times 1000}{\begin{align}
& w{{t}_{solvent}} \\
& \\
\end{align}}\]
\[m=\dfrac{{{m}_{solute}}\times 1000}{\begin{align}
& w{{t}_{solvent}} \\
& \\
\end{align}}=\dfrac{5\times 1000}{342\times 95}\]
\[m=0.153\]…..equation 3
Where, ${{m}_{solute}}=\dfrac{Mas{{s}_{given}}}{MolarMass}=\dfrac{5}{342}$
Now, we will put the value of equation 2 and equation 3 in equation 1 and calculate ${{K}_{f}}$
Therefore, ${{K}_{f}}=\dfrac{2.15}{0.153}=14.05$…..equation 4
Now, let’s take case 2 and calculate the freezing point of 5% glucose
Now, we will calculate the molality of glucose.
A 5% solution of cane sugar means 5g glucose is dissolved in 95g of water.
Therefore given mass=5g
Molar mass=180g
Wt of solvent=95g
Formula for molality is:
\[m=\dfrac{{{m}_{solute}}\times 1000}{\begin{align}
& w{{t}_{solvent}} \\
& \\
\end{align}}\]
\[m=\dfrac{{{m}_{solute}}\times 1000}{\begin{align}
& w{{t}_{solvent}} \\
& \\
\end{align}}=\dfrac{5\times 1000}{180\times 95}\]……where, \[{{m}_{solute}}=\dfrac{Mas{{s}_{given}}}{MolarMass}=\dfrac{5}{180}\]
\[m=0.2923\]…..equation 5
Now, we will calculate the freezing point of glucose using the formula
\[\Delta {{T}_{f}}={{K}_{f}}\times m\]
\[\Delta {{T}_{f}}={{T}_{water}}-{{T}_{glu\cos e}}\]
Therefore, ${{T}_{glu\cos e}}={{T}_{water}}-{{K}_{f}}\times m$ …..equation 6
On putting the values of equation 4 and equation 5 in equation 6, we get
\[{{T}_{glu\cos e}}=\,273.15-14.05\times 0.2923\]
Therefore, ${{T}_{glu\cos e}}=269.04K$, Which is close to option (B).
So, the correct answer is “Option B”.
Note: Convert the temperatures into kelvin. Take weight of solution in Kilograms. Freezing point of a solute is always less than the freezing point of its solvent.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

10 examples of friction in our daily life

