
A 15 g ball is shot from a spring gun whose spring has a force constant of 600 N/m. The spring is compressed by 5 cm. The greatest possible horizontal range of the ball for this compression is (\[g = 10\,{\text{m/}}{{\text{s}}^2}\])
A. 6.0 m
B. 10.0 m
C. 12.0 m
D. 8.0 m
Answer
547.5k+ views
Hint: Using the law of conservation of energy, the elastic potential energy of the spring is converted into the kinetic energy. Therefore, calculate the velocity of the ball. Recall the expression for the horizontal range. The projectile attains the maximum range when the angle of projection is equal to \[45^\circ \].
Formula used:
Potential energy stored in the spring, \[U = \dfrac{1}{2}k{x^2}\]
Here, k is the force constant and x is the displacement of the spring.
Range, \[R = \dfrac{{{v^2}\sin 2\theta }}{g}\]
Here, v is the initial velocity of the ball, \[\theta \] is the angle of projection and g is the acceleration due to gravity.
Complete step by step answer:
As the spring is compressed by a distance 5cm, the energy is stored in the spring in the form of potential energy. We have the expression for the elastic potential energy of the spring,
\[U = \dfrac{1}{2}k{x^2}\]
Here, k is the force constant and x is the displacement of the spring.
Substituting \[k = 600\,{\text{N/m}}\] and \[x = 0.05\,{\text{m}}\] in the above equation, we get,
\[U = \dfrac{1}{2}\left( {600} \right){\left( {0.05} \right)^2}\]
\[ \Rightarrow U = \dfrac{1}{2}\left( {600} \right){\left( {0.05} \right)^2}\]
\[ \Rightarrow U = 0.75\,{\text{J}}\]
Using the law of conservation of energy, the elastic potential energy of the spring is converted into the kinetic energy. Therefore, we can write,
\[\dfrac{1}{2}m{v^2} = \dfrac{1}{2}k{x^2}\]
\[ \Rightarrow \dfrac{1}{2}m{v^2} = 0.75\,{\text{J}}\]
Substituting \[m = 0.015\,{\text{kg}}\] in the above equation, we get,
\[\dfrac{1}{2}\left( {0.015} \right){v^2} = 0.75\]
\[ \Rightarrow {v^2} = 100\]
\[ \Rightarrow v = 10\,{\text{m/s}}\]
We have the expression for the horizontal range of the projectile,
\[R = \dfrac{{{v^2}\sin 2\theta }}{g}\]
Here, v is the initial velocity of the ball, \[\theta \] is the angle of projection and g is the acceleration due to gravity.
We know that the projectile attains the maximum range when the angle of projection is equal to \[45^\circ \].
Substituting \[v = 10\,{\text{m/s}}\], \[\theta = 45^\circ \] and \[g = 10\,{\text{m/}}{{\text{s}}^2}\] in the above equation, we get,
\[R = \dfrac{{{{\left( {10} \right)}^2}\sin 2\left( {45} \right)}}{{10}}\]
\[ \Rightarrow R = \dfrac{{{{\left( {10} \right)}^2}\sin 90}}{{10}}\]
\[ \therefore R = 10\,{\text{m}}\]
So, the correct answer is option B.
Note: For the greatest possible horizontal range, the term \[\sin 2\theta \] should be equal to 1. For this, the angle \[\theta \] should be \[45^\circ \]. If you don’t remember the formula for the horizontal range, use the kinematic equation in the horizontal direction.
Formula used:
Potential energy stored in the spring, \[U = \dfrac{1}{2}k{x^2}\]
Here, k is the force constant and x is the displacement of the spring.
Range, \[R = \dfrac{{{v^2}\sin 2\theta }}{g}\]
Here, v is the initial velocity of the ball, \[\theta \] is the angle of projection and g is the acceleration due to gravity.
Complete step by step answer:
As the spring is compressed by a distance 5cm, the energy is stored in the spring in the form of potential energy. We have the expression for the elastic potential energy of the spring,
\[U = \dfrac{1}{2}k{x^2}\]
Here, k is the force constant and x is the displacement of the spring.
Substituting \[k = 600\,{\text{N/m}}\] and \[x = 0.05\,{\text{m}}\] in the above equation, we get,
\[U = \dfrac{1}{2}\left( {600} \right){\left( {0.05} \right)^2}\]
\[ \Rightarrow U = \dfrac{1}{2}\left( {600} \right){\left( {0.05} \right)^2}\]
\[ \Rightarrow U = 0.75\,{\text{J}}\]
Using the law of conservation of energy, the elastic potential energy of the spring is converted into the kinetic energy. Therefore, we can write,
\[\dfrac{1}{2}m{v^2} = \dfrac{1}{2}k{x^2}\]
\[ \Rightarrow \dfrac{1}{2}m{v^2} = 0.75\,{\text{J}}\]
Substituting \[m = 0.015\,{\text{kg}}\] in the above equation, we get,
\[\dfrac{1}{2}\left( {0.015} \right){v^2} = 0.75\]
\[ \Rightarrow {v^2} = 100\]
\[ \Rightarrow v = 10\,{\text{m/s}}\]
We have the expression for the horizontal range of the projectile,
\[R = \dfrac{{{v^2}\sin 2\theta }}{g}\]
Here, v is the initial velocity of the ball, \[\theta \] is the angle of projection and g is the acceleration due to gravity.
We know that the projectile attains the maximum range when the angle of projection is equal to \[45^\circ \].
Substituting \[v = 10\,{\text{m/s}}\], \[\theta = 45^\circ \] and \[g = 10\,{\text{m/}}{{\text{s}}^2}\] in the above equation, we get,
\[R = \dfrac{{{{\left( {10} \right)}^2}\sin 2\left( {45} \right)}}{{10}}\]
\[ \Rightarrow R = \dfrac{{{{\left( {10} \right)}^2}\sin 90}}{{10}}\]
\[ \therefore R = 10\,{\text{m}}\]
So, the correct answer is option B.
Note: For the greatest possible horizontal range, the term \[\sin 2\theta \] should be equal to 1. For this, the angle \[\theta \] should be \[45^\circ \]. If you don’t remember the formula for the horizontal range, use the kinematic equation in the horizontal direction.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

