
A 0.2g sample of benzoic acid \[{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{COOH}}\] is titrated with a 0.120M \[{\text{Ba(OH}}{{\text{)}}_{\text{2}}}\]solution. What volume of the \[{\text{Ba(OH}}{{\text{)}}_{\text{2}}}\]solution is required to reach the equivalence point?
Molar mass of $C_6H_5COOH$ = $122.1\, gmol^{-1}$
A. 6.82 ml
B. 13.6 ml
C. 17.6 ml
D. 35.2 ml
Answer
568.2k+ views
Hint: Write the balanced acid-base reaction between \[{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{COOH}}\] and \[{\text{Ba(OH}}{{\text{)}}_{\text{2}}}\]. Calculate the moles of benzoic acid and then using the stoichiometric ratio, calculate the moles of \[{\text{Ba(OH}}{{\text{)}}_{\text{2}}}\]. Finally using the moles and molar concentration of \[{\text{Ba(OH}}{{\text{)}}_{\text{2}}}\] , calculate the volume of it.
Formula Used:
\[{\text{Moles = }}\dfrac{{{\text{mass}}}}{{{\text{Molar mass}}}}\]
\[{\text{Molarity = }}\dfrac{{{\text{ moles }}}}{{{\text{ L of solution}}}}\]
Complete step by step answer:
The balanced acid-base reaction between \[{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{COOH}}\] and \[{\text{Ba(OH}}{{\text{)}}_{\text{2}}}\] is as follows:
\[{\text{2}}{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{COOH (aq) + Ba(OH}}{{\text{)}}_{\text{2}}}{\text{(aq) }} \rightleftharpoons {\text{ Ba(}}{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{COO}}{)_2}({\text{aq) + 2}}{{\text{H}}_{\text{2}}}{\text{O(l)}}\]
Now, using the mass and molar mass of \[{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{COOH}}\] given to us calculate the moles of \[{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{COOH}}\].
\[{\text{Moles = }}\dfrac{{{\text{mass}}}}{{{\text{Molar mass}}}}\]
Substitute 0.2g for the mass of \[{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{COOH}}\] and \[122.1{\text{ gm}}{{\text{ol}}^{{\text{ - 1}}}}\] for molar mass of \[{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{COOH}}\] and calculate the moles of \[{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{COOH}}\] as follows:
\[{\text{Moles = }}\dfrac{{0.2{\text{ g}}}}{{122.1{\text{ gm}}{{\text{ol}}^{{\text{ - 1}}}}}} = 0.0{\text{0163 mol}}\]
Now, using these moles of \[{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{COOH}}\] and balanced chemical reaction calculate the moles of \[{\text{Ba(OH}}{{\text{)}}_{\text{2}}}\] at as follows:
From the balanced reaction, we can say that 2 moles of \[{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{COOH}}\] reacts with 1 mole of \[{\text{Ba(OH}}{{\text{)}}_{\text{2}}}\].
So, \[0.0{\text{0163 mol }}{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{COOH}} \times \dfrac{{1{\text{ mol Ba(OH}}{{\text{)}}_{\text{2}}}{\text{ }}}}{{2{\text{ mol }}{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{COOH }}}} = 8.19 \times {10^{{\text{ - 4}}}}{\text{ mol Ba(OH}}{{\text{)}}_{\text{2}}}\]
Now, we have moles of \[{\text{Ba(OH}}{{\text{)}}_{\text{2}}}\] and also we have given molar concentration of \[{\text{Ba(OH}}{{\text{)}}_{\text{2}}}\].
Hence, calculate the volume of \[{\text{Ba(OH}}{{\text{)}}_{\text{2}}}\]require to reach the equivalence point as follows:
\[{\text{Molarity = }}\dfrac{{{\text{ moles }}}}{{{\text{ L of solution}}}}\]
Substitute \[8.19 \times {10^{{\text{ - 4}}}}{\text{ mol Ba(OH}}{{\text{)}}_{\text{2}}}\] and 0.120M \[{\text{Ba(OH}}{{\text{)}}_{\text{2}}}\] in the molarity equation and calculate the volume of \[{\text{Ba(OH}}{{\text{)}}_{\text{2}}}\]require to reach the equivalence point.
\[{\text{Litres of Ba(OH}}{{\text{)}}_{\text{2}}}{\text{ solution}} = 0.00682{\text{ L}}\]
Convert the volume of \[{\text{Ba(OH}}{{\text{)}}_{\text{2}}}\] solution from L to ml.
1 L = 1000 ml
\[0.00682{\text{ L}} \times \dfrac{{1000{\text{ ml}}}}{{1{\text{ L}}}} = 6.82{\text{ ml}}\]
Thus, 6.82 ml of \[{\text{Ba(OH}}{{\text{)}}_{\text{2}}}\] is required to reach the equivalence point.
Hence, the correct option is (A) 6.82 ml
Note:
Acid is a proton donor species and the base is a proton acceptor species. It is very important to write the correct balance reaction as a mole calculation depends on the stoichiometric ratio. From the balanced reaction, we can say that at the equivalence point 1 mole of \[{\text{Ba(OH}}{{\text{)}}_{\text{2}}}\] reacts with 2 moles of\[{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{COOH}}\].
Formula Used:
\[{\text{Moles = }}\dfrac{{{\text{mass}}}}{{{\text{Molar mass}}}}\]
\[{\text{Molarity = }}\dfrac{{{\text{ moles }}}}{{{\text{ L of solution}}}}\]
Complete step by step answer:
The balanced acid-base reaction between \[{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{COOH}}\] and \[{\text{Ba(OH}}{{\text{)}}_{\text{2}}}\] is as follows:
\[{\text{2}}{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{COOH (aq) + Ba(OH}}{{\text{)}}_{\text{2}}}{\text{(aq) }} \rightleftharpoons {\text{ Ba(}}{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{COO}}{)_2}({\text{aq) + 2}}{{\text{H}}_{\text{2}}}{\text{O(l)}}\]
Now, using the mass and molar mass of \[{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{COOH}}\] given to us calculate the moles of \[{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{COOH}}\].
\[{\text{Moles = }}\dfrac{{{\text{mass}}}}{{{\text{Molar mass}}}}\]
Substitute 0.2g for the mass of \[{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{COOH}}\] and \[122.1{\text{ gm}}{{\text{ol}}^{{\text{ - 1}}}}\] for molar mass of \[{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{COOH}}\] and calculate the moles of \[{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{COOH}}\] as follows:
\[{\text{Moles = }}\dfrac{{0.2{\text{ g}}}}{{122.1{\text{ gm}}{{\text{ol}}^{{\text{ - 1}}}}}} = 0.0{\text{0163 mol}}\]
Now, using these moles of \[{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{COOH}}\] and balanced chemical reaction calculate the moles of \[{\text{Ba(OH}}{{\text{)}}_{\text{2}}}\] at as follows:
From the balanced reaction, we can say that 2 moles of \[{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{COOH}}\] reacts with 1 mole of \[{\text{Ba(OH}}{{\text{)}}_{\text{2}}}\].
So, \[0.0{\text{0163 mol }}{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{COOH}} \times \dfrac{{1{\text{ mol Ba(OH}}{{\text{)}}_{\text{2}}}{\text{ }}}}{{2{\text{ mol }}{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{COOH }}}} = 8.19 \times {10^{{\text{ - 4}}}}{\text{ mol Ba(OH}}{{\text{)}}_{\text{2}}}\]
Now, we have moles of \[{\text{Ba(OH}}{{\text{)}}_{\text{2}}}\] and also we have given molar concentration of \[{\text{Ba(OH}}{{\text{)}}_{\text{2}}}\].
Hence, calculate the volume of \[{\text{Ba(OH}}{{\text{)}}_{\text{2}}}\]require to reach the equivalence point as follows:
\[{\text{Molarity = }}\dfrac{{{\text{ moles }}}}{{{\text{ L of solution}}}}\]
Substitute \[8.19 \times {10^{{\text{ - 4}}}}{\text{ mol Ba(OH}}{{\text{)}}_{\text{2}}}\] and 0.120M \[{\text{Ba(OH}}{{\text{)}}_{\text{2}}}\] in the molarity equation and calculate the volume of \[{\text{Ba(OH}}{{\text{)}}_{\text{2}}}\]require to reach the equivalence point.
\[{\text{Litres of Ba(OH}}{{\text{)}}_{\text{2}}}{\text{ solution}} = 0.00682{\text{ L}}\]
Convert the volume of \[{\text{Ba(OH}}{{\text{)}}_{\text{2}}}\] solution from L to ml.
1 L = 1000 ml
\[0.00682{\text{ L}} \times \dfrac{{1000{\text{ ml}}}}{{1{\text{ L}}}} = 6.82{\text{ ml}}\]
Thus, 6.82 ml of \[{\text{Ba(OH}}{{\text{)}}_{\text{2}}}\] is required to reach the equivalence point.
Hence, the correct option is (A) 6.82 ml
Note:
Acid is a proton donor species and the base is a proton acceptor species. It is very important to write the correct balance reaction as a mole calculation depends on the stoichiometric ratio. From the balanced reaction, we can say that at the equivalence point 1 mole of \[{\text{Ba(OH}}{{\text{)}}_{\text{2}}}\] reacts with 2 moles of\[{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{COOH}}\].
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

