
A 0.2g sample of benzoic acid \[{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{COOH}}\] is titrated with a 0.120M \[{\text{Ba(OH}}{{\text{)}}_{\text{2}}}\]solution. What volume of the \[{\text{Ba(OH}}{{\text{)}}_{\text{2}}}\]solution is required to reach the equivalence point?
Molar mass of $C_6H_5COOH$ = $122.1\, gmol^{-1}$
A. 6.82 ml
B. 13.6 ml
C. 17.6 ml
D. 35.2 ml
Answer
570k+ views
Hint: Write the balanced acid-base reaction between \[{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{COOH}}\] and \[{\text{Ba(OH}}{{\text{)}}_{\text{2}}}\]. Calculate the moles of benzoic acid and then using the stoichiometric ratio, calculate the moles of \[{\text{Ba(OH}}{{\text{)}}_{\text{2}}}\]. Finally using the moles and molar concentration of \[{\text{Ba(OH}}{{\text{)}}_{\text{2}}}\] , calculate the volume of it.
Formula Used:
\[{\text{Moles = }}\dfrac{{{\text{mass}}}}{{{\text{Molar mass}}}}\]
\[{\text{Molarity = }}\dfrac{{{\text{ moles }}}}{{{\text{ L of solution}}}}\]
Complete step by step answer:
The balanced acid-base reaction between \[{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{COOH}}\] and \[{\text{Ba(OH}}{{\text{)}}_{\text{2}}}\] is as follows:
\[{\text{2}}{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{COOH (aq) + Ba(OH}}{{\text{)}}_{\text{2}}}{\text{(aq) }} \rightleftharpoons {\text{ Ba(}}{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{COO}}{)_2}({\text{aq) + 2}}{{\text{H}}_{\text{2}}}{\text{O(l)}}\]
Now, using the mass and molar mass of \[{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{COOH}}\] given to us calculate the moles of \[{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{COOH}}\].
\[{\text{Moles = }}\dfrac{{{\text{mass}}}}{{{\text{Molar mass}}}}\]
Substitute 0.2g for the mass of \[{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{COOH}}\] and \[122.1{\text{ gm}}{{\text{ol}}^{{\text{ - 1}}}}\] for molar mass of \[{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{COOH}}\] and calculate the moles of \[{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{COOH}}\] as follows:
\[{\text{Moles = }}\dfrac{{0.2{\text{ g}}}}{{122.1{\text{ gm}}{{\text{ol}}^{{\text{ - 1}}}}}} = 0.0{\text{0163 mol}}\]
Now, using these moles of \[{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{COOH}}\] and balanced chemical reaction calculate the moles of \[{\text{Ba(OH}}{{\text{)}}_{\text{2}}}\] at as follows:
From the balanced reaction, we can say that 2 moles of \[{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{COOH}}\] reacts with 1 mole of \[{\text{Ba(OH}}{{\text{)}}_{\text{2}}}\].
So, \[0.0{\text{0163 mol }}{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{COOH}} \times \dfrac{{1{\text{ mol Ba(OH}}{{\text{)}}_{\text{2}}}{\text{ }}}}{{2{\text{ mol }}{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{COOH }}}} = 8.19 \times {10^{{\text{ - 4}}}}{\text{ mol Ba(OH}}{{\text{)}}_{\text{2}}}\]
Now, we have moles of \[{\text{Ba(OH}}{{\text{)}}_{\text{2}}}\] and also we have given molar concentration of \[{\text{Ba(OH}}{{\text{)}}_{\text{2}}}\].
Hence, calculate the volume of \[{\text{Ba(OH}}{{\text{)}}_{\text{2}}}\]require to reach the equivalence point as follows:
\[{\text{Molarity = }}\dfrac{{{\text{ moles }}}}{{{\text{ L of solution}}}}\]
Substitute \[8.19 \times {10^{{\text{ - 4}}}}{\text{ mol Ba(OH}}{{\text{)}}_{\text{2}}}\] and 0.120M \[{\text{Ba(OH}}{{\text{)}}_{\text{2}}}\] in the molarity equation and calculate the volume of \[{\text{Ba(OH}}{{\text{)}}_{\text{2}}}\]require to reach the equivalence point.
\[{\text{Litres of Ba(OH}}{{\text{)}}_{\text{2}}}{\text{ solution}} = 0.00682{\text{ L}}\]
Convert the volume of \[{\text{Ba(OH}}{{\text{)}}_{\text{2}}}\] solution from L to ml.
1 L = 1000 ml
\[0.00682{\text{ L}} \times \dfrac{{1000{\text{ ml}}}}{{1{\text{ L}}}} = 6.82{\text{ ml}}\]
Thus, 6.82 ml of \[{\text{Ba(OH}}{{\text{)}}_{\text{2}}}\] is required to reach the equivalence point.
Hence, the correct option is (A) 6.82 ml
Note:
Acid is a proton donor species and the base is a proton acceptor species. It is very important to write the correct balance reaction as a mole calculation depends on the stoichiometric ratio. From the balanced reaction, we can say that at the equivalence point 1 mole of \[{\text{Ba(OH}}{{\text{)}}_{\text{2}}}\] reacts with 2 moles of\[{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{COOH}}\].
Formula Used:
\[{\text{Moles = }}\dfrac{{{\text{mass}}}}{{{\text{Molar mass}}}}\]
\[{\text{Molarity = }}\dfrac{{{\text{ moles }}}}{{{\text{ L of solution}}}}\]
Complete step by step answer:
The balanced acid-base reaction between \[{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{COOH}}\] and \[{\text{Ba(OH}}{{\text{)}}_{\text{2}}}\] is as follows:
\[{\text{2}}{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{COOH (aq) + Ba(OH}}{{\text{)}}_{\text{2}}}{\text{(aq) }} \rightleftharpoons {\text{ Ba(}}{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{COO}}{)_2}({\text{aq) + 2}}{{\text{H}}_{\text{2}}}{\text{O(l)}}\]
Now, using the mass and molar mass of \[{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{COOH}}\] given to us calculate the moles of \[{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{COOH}}\].
\[{\text{Moles = }}\dfrac{{{\text{mass}}}}{{{\text{Molar mass}}}}\]
Substitute 0.2g for the mass of \[{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{COOH}}\] and \[122.1{\text{ gm}}{{\text{ol}}^{{\text{ - 1}}}}\] for molar mass of \[{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{COOH}}\] and calculate the moles of \[{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{COOH}}\] as follows:
\[{\text{Moles = }}\dfrac{{0.2{\text{ g}}}}{{122.1{\text{ gm}}{{\text{ol}}^{{\text{ - 1}}}}}} = 0.0{\text{0163 mol}}\]
Now, using these moles of \[{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{COOH}}\] and balanced chemical reaction calculate the moles of \[{\text{Ba(OH}}{{\text{)}}_{\text{2}}}\] at as follows:
From the balanced reaction, we can say that 2 moles of \[{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{COOH}}\] reacts with 1 mole of \[{\text{Ba(OH}}{{\text{)}}_{\text{2}}}\].
So, \[0.0{\text{0163 mol }}{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{COOH}} \times \dfrac{{1{\text{ mol Ba(OH}}{{\text{)}}_{\text{2}}}{\text{ }}}}{{2{\text{ mol }}{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{COOH }}}} = 8.19 \times {10^{{\text{ - 4}}}}{\text{ mol Ba(OH}}{{\text{)}}_{\text{2}}}\]
Now, we have moles of \[{\text{Ba(OH}}{{\text{)}}_{\text{2}}}\] and also we have given molar concentration of \[{\text{Ba(OH}}{{\text{)}}_{\text{2}}}\].
Hence, calculate the volume of \[{\text{Ba(OH}}{{\text{)}}_{\text{2}}}\]require to reach the equivalence point as follows:
\[{\text{Molarity = }}\dfrac{{{\text{ moles }}}}{{{\text{ L of solution}}}}\]
Substitute \[8.19 \times {10^{{\text{ - 4}}}}{\text{ mol Ba(OH}}{{\text{)}}_{\text{2}}}\] and 0.120M \[{\text{Ba(OH}}{{\text{)}}_{\text{2}}}\] in the molarity equation and calculate the volume of \[{\text{Ba(OH}}{{\text{)}}_{\text{2}}}\]require to reach the equivalence point.
\[{\text{Litres of Ba(OH}}{{\text{)}}_{\text{2}}}{\text{ solution}} = 0.00682{\text{ L}}\]
Convert the volume of \[{\text{Ba(OH}}{{\text{)}}_{\text{2}}}\] solution from L to ml.
1 L = 1000 ml
\[0.00682{\text{ L}} \times \dfrac{{1000{\text{ ml}}}}{{1{\text{ L}}}} = 6.82{\text{ ml}}\]
Thus, 6.82 ml of \[{\text{Ba(OH}}{{\text{)}}_{\text{2}}}\] is required to reach the equivalence point.
Hence, the correct option is (A) 6.82 ml
Note:
Acid is a proton donor species and the base is a proton acceptor species. It is very important to write the correct balance reaction as a mole calculation depends on the stoichiometric ratio. From the balanced reaction, we can say that at the equivalence point 1 mole of \[{\text{Ba(OH}}{{\text{)}}_{\text{2}}}\] reacts with 2 moles of\[{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{COOH}}\].
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

10 examples of friction in our daily life

