
A \[0.145{\text{ d}}{{\text{m}}^{\text{3}}}\] of hydrogen gas is collected over water at \[23^\circ {\text{C}}\] and total pressure of \[{\text{99085 N}}{{\text{m}}^{{\text{ - 2}}}}\]. If the vapour pressure of water at \[23^\circ {\text{C}}\] is \[{\text{2973 N}}{{\text{m}}^{{\text{ - 2}}}}\]. What is the volume of dry gas under NTP conditions?
A. 0.136
B. 0.145
C. 0.169
D. 0.192
Answer
569.4k+ views
Hint: Using the given total pressure of gas and vapour pressure of water calculate the pressure of dry hydrogen gas at \[23^\circ {\text{C}}\]. Using the combined gas law, calculate the dry hydrogen gas under NTP conditions.
Formula Used:
\[{\text{Total pressure = Water vapor pressure + Pressure of dry hydrogen gas}}\]
Combined gas law: \[\dfrac{{{P_1}{V_1}}}{{{T_1}}} = \dfrac{{{P_2}{V_2}}}{{{T_2}}}\]
Complete answer:
We have given total pressure of gas and vapour pressure of water at \[23^\circ {\text{C}}\].
Total pressure = \[{\text{99085 N}}{{\text{m}}^{{\text{ - 2}}}}\]
Vapour pressure of water = \[{\text{2973 N}}{{\text{m}}^{{\text{ - 2}}}}\]
Using the total pressure of gas and vapour pressure of water we have to calculate the pressure of dry hydrogen gas at \[23^\circ {\text{C}}\].
\[{\text{Total pressure = Water vapor pressure + Pressure of dry hydrogen gas}}\]
Substitute \[{\text{99085 N}}{{\text{m}}^{{\text{ - 2}}}}\] for total pressure, \[{\text{2973 N}}{{\text{m}}^{{\text{ - 2}}}}\] for water vapour pressure and calculate the pressure of dry hydrogen gas.
\[\Rightarrow {\text{99085 N}}{{\text{m}}^{{\text{ - 2}}}} = {\text{2973 N}}{{\text{m}}^{{\text{ - 2}}}}{\text{ + Pressure of dry hydrogen gas}}\]
\[\Rightarrow {\text{Pressure of dry hydrogen gas = 99085 N}}{{\text{m}}^{{\text{ - 2}}}} - {\text{2973 N}}{{\text{m}}^{{\text{ - 2}}}} = 96112{\text{N}}{{\text{m}}^{{\text{ - 2}}}}\]
Now using the combined gas law we can calculate the volume of dry gas under NTP conditions.
\[\dfrac{{{P_1}{V_1}}}{{{T_1}}} = \dfrac{{{P_2}{V_2}}}{{{T_2}}}\]
\[{P_1}\] = \[96112{\text{N}}{{\text{m}}^{{\text{ - 2}}}}\]
\[{V_1}\] = \[0.145{\text{ d}}{{\text{m}}^{\text{3}}}\]
\[{T_1} = 23^\circ {\text{C}} = {\text{ (23 + 273)K = 296 K}}\]
At NTP condition pressure is 1 atm and temperature is \[20^\circ {\text{C}}\].
\[{P_2} = 1{\text{ atm = 101325 N}}{{\text{m}}^{{\text{ - 2}}}}\]
\[{T_2} = {\text{ 20}}^\circ {\text{C}} = {\text{ 293 K}}\]
\[\Rightarrow \dfrac{{96112{\text{N}}{{\text{m}}^{{\text{ - 2}}}} \times 0.145{\text{ d}}{{\text{m}}^{\text{3}}}}}{{{\text{296 K}}}} = \dfrac{{{\text{101325 N}}{{\text{m}}^{{\text{ - 2}}}}{{ \times }}{{\text{V}}_{\text{2}}}}}{{{\text{293K}}}}\]
\[\Rightarrow {V_2} = 0.136{\text{ d}}{{\text{m}}^{\text{3}}}\]
Thus, the volume of dry hydrogen gas under NTP conditions is \[0.136{\text{ d}}{{\text{m}}^{\text{3}}}\].
Hence, option (A) \[0.136{\text{ d}}{{\text{m}}^{\text{3}}}\] is the correct answer.
Note:
Water vapour pressure varies with temperature. When gas collected over water the total pressure is the sum of the vapour pressure of water and pressure of the gas.
Formula Used:
\[{\text{Total pressure = Water vapor pressure + Pressure of dry hydrogen gas}}\]
Combined gas law: \[\dfrac{{{P_1}{V_1}}}{{{T_1}}} = \dfrac{{{P_2}{V_2}}}{{{T_2}}}\]
Complete answer:
We have given total pressure of gas and vapour pressure of water at \[23^\circ {\text{C}}\].
Total pressure = \[{\text{99085 N}}{{\text{m}}^{{\text{ - 2}}}}\]
Vapour pressure of water = \[{\text{2973 N}}{{\text{m}}^{{\text{ - 2}}}}\]
Using the total pressure of gas and vapour pressure of water we have to calculate the pressure of dry hydrogen gas at \[23^\circ {\text{C}}\].
\[{\text{Total pressure = Water vapor pressure + Pressure of dry hydrogen gas}}\]
Substitute \[{\text{99085 N}}{{\text{m}}^{{\text{ - 2}}}}\] for total pressure, \[{\text{2973 N}}{{\text{m}}^{{\text{ - 2}}}}\] for water vapour pressure and calculate the pressure of dry hydrogen gas.
\[\Rightarrow {\text{99085 N}}{{\text{m}}^{{\text{ - 2}}}} = {\text{2973 N}}{{\text{m}}^{{\text{ - 2}}}}{\text{ + Pressure of dry hydrogen gas}}\]
\[\Rightarrow {\text{Pressure of dry hydrogen gas = 99085 N}}{{\text{m}}^{{\text{ - 2}}}} - {\text{2973 N}}{{\text{m}}^{{\text{ - 2}}}} = 96112{\text{N}}{{\text{m}}^{{\text{ - 2}}}}\]
Now using the combined gas law we can calculate the volume of dry gas under NTP conditions.
\[\dfrac{{{P_1}{V_1}}}{{{T_1}}} = \dfrac{{{P_2}{V_2}}}{{{T_2}}}\]
\[{P_1}\] = \[96112{\text{N}}{{\text{m}}^{{\text{ - 2}}}}\]
\[{V_1}\] = \[0.145{\text{ d}}{{\text{m}}^{\text{3}}}\]
\[{T_1} = 23^\circ {\text{C}} = {\text{ (23 + 273)K = 296 K}}\]
At NTP condition pressure is 1 atm and temperature is \[20^\circ {\text{C}}\].
\[{P_2} = 1{\text{ atm = 101325 N}}{{\text{m}}^{{\text{ - 2}}}}\]
\[{T_2} = {\text{ 20}}^\circ {\text{C}} = {\text{ 293 K}}\]
\[\Rightarrow \dfrac{{96112{\text{N}}{{\text{m}}^{{\text{ - 2}}}} \times 0.145{\text{ d}}{{\text{m}}^{\text{3}}}}}{{{\text{296 K}}}} = \dfrac{{{\text{101325 N}}{{\text{m}}^{{\text{ - 2}}}}{{ \times }}{{\text{V}}_{\text{2}}}}}{{{\text{293K}}}}\]
\[\Rightarrow {V_2} = 0.136{\text{ d}}{{\text{m}}^{\text{3}}}\]
Thus, the volume of dry hydrogen gas under NTP conditions is \[0.136{\text{ d}}{{\text{m}}^{\text{3}}}\].
Hence, option (A) \[0.136{\text{ d}}{{\text{m}}^{\text{3}}}\] is the correct answer.
Note:
Water vapour pressure varies with temperature. When gas collected over water the total pressure is the sum of the vapour pressure of water and pressure of the gas.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

10 examples of friction in our daily life

