
$ 64 $ tuning forks are arranged such that each fork produces $ 4 $ beats per second with the next one. If the frequency of the last fork is octave of the first, frequency of $ 16th $ fork is
A. $ 316{\text{ Hz}} $
B. $ {\text{322 Hz}} $
C. $ {\text{312 Hz}} $
D. $ {\text{308 Hz}} $
Answer
478.2k+ views
Hint: In this question, we are given each produces a beat frequency of $ {\text{4 Hz}} $ so the difference between the frequencies of two consecutive forks will be $ 4 $ beats per second. This forms an arithmetic progression, and we can find out the frequency of the last fork, but the last fork is the octave of the first. Using this relation, we can find out the frequency of the first fork, and using the A.P we can find out the frequency of the $ 16th $ fork
Beat frequency, $ {{\text{f}}_b} = \left| {{{\text{f}}_2} - {{\text{f}}_1}} \right| $
Where $ {{\text{f}}_1} $ and $ {{\text{f}}_2} $ are the frequencies of two waves.
Complete answer:
We are given,
There are $ 64 $ tuning forks and each produces $ 4 $ beats per second
Let the frequencies of fork be $ {{\text{f}}_{_1}},{{\text{f}}_2},{{\text{f}}_3},{\text{ }}......{\text{ , }}{{\text{f}}_{64}} $ respectively.
Since $ {{\text{f}}_2} - {{\text{f}}_1} = {{\text{f}}_4} - {{\text{f}}_3} = .... = {{\text{f}}_{64}} - {{\text{f}}_{63}} = 4 $ they form an arithmetic progression with first term as $ {{\text{f}}_{_1}} $ and common difference as $ {\text{4}} $
Therefore, the frequency of last tuning fork, $ {{\text{f}}_{64}} = {{\text{f}}_1} + \left( {n - 1} \right)d $
$ \Rightarrow {{\text{f}}_{64}} = {{\text{f}}_1} + \left( {64 - 1} \right)4 $
$ \Rightarrow {{\text{f}}_{64}} = {{\text{f}}_1} + 252 $
But it is given the last fork is octave of the first
Thus, $ {{\text{f}}_{64}} = 2{{\text{f}}_1} $
Substituting this in the equation we get,
$ \Rightarrow 2{{\text{f}}_1} = {{\text{f}}_1} + 252 $
$ \Rightarrow {{\text{f}}_1} = 252{\text{ Hz}} $
The Frequency of the first tuning fork is $ 252{\text{ Hz}} $
Now to find out the frequency of the $ 16th $ tuning fork we use the A.P
$ {{\text{f}}_{16}} = {{\text{f}}_1} + \left( {n - 1} \right)d $
Replacing $ n $ with $ 16 $ and $ d $ with $ 4 $ we get,
$ \Rightarrow {{\text{f}}_{16}} = {{\text{f}}_1} + \left( {16 - 1} \right)4 $
$ \Rightarrow {{\text{f}}_{16}} = {{\text{f}}_1} + 60 $
But $ {{\text{f}}_1} = 252{\text{ Hz}} $
Therefore, $ {{\text{f}}_{16}} = 252 + 60 $
$ \Rightarrow {{\text{f}}_{16}} = 312{\text{ Hz}} $
Hene, the frequency of the $ 16th $ fork is $ 312{\text{ Hz}} $
The correct option is option C.
Note:
Beats are produced when the two waves of nearby frequencies are superimposed together. This will occur when the two waves travel in the same path. Beats also cause a periodic variation in the intensity of resultant waves. If the beat frequency is greater than $ {\text{10 Hz}} $ then it cannot be distinguished by human ears.
Beat frequency, $ {{\text{f}}_b} = \left| {{{\text{f}}_2} - {{\text{f}}_1}} \right| $
Where $ {{\text{f}}_1} $ and $ {{\text{f}}_2} $ are the frequencies of two waves.
Complete answer:
We are given,
There are $ 64 $ tuning forks and each produces $ 4 $ beats per second
Let the frequencies of fork be $ {{\text{f}}_{_1}},{{\text{f}}_2},{{\text{f}}_3},{\text{ }}......{\text{ , }}{{\text{f}}_{64}} $ respectively.
Since $ {{\text{f}}_2} - {{\text{f}}_1} = {{\text{f}}_4} - {{\text{f}}_3} = .... = {{\text{f}}_{64}} - {{\text{f}}_{63}} = 4 $ they form an arithmetic progression with first term as $ {{\text{f}}_{_1}} $ and common difference as $ {\text{4}} $
Therefore, the frequency of last tuning fork, $ {{\text{f}}_{64}} = {{\text{f}}_1} + \left( {n - 1} \right)d $
$ \Rightarrow {{\text{f}}_{64}} = {{\text{f}}_1} + \left( {64 - 1} \right)4 $
$ \Rightarrow {{\text{f}}_{64}} = {{\text{f}}_1} + 252 $
But it is given the last fork is octave of the first
Thus, $ {{\text{f}}_{64}} = 2{{\text{f}}_1} $
Substituting this in the equation we get,
$ \Rightarrow 2{{\text{f}}_1} = {{\text{f}}_1} + 252 $
$ \Rightarrow {{\text{f}}_1} = 252{\text{ Hz}} $
The Frequency of the first tuning fork is $ 252{\text{ Hz}} $
Now to find out the frequency of the $ 16th $ tuning fork we use the A.P
$ {{\text{f}}_{16}} = {{\text{f}}_1} + \left( {n - 1} \right)d $
Replacing $ n $ with $ 16 $ and $ d $ with $ 4 $ we get,
$ \Rightarrow {{\text{f}}_{16}} = {{\text{f}}_1} + \left( {16 - 1} \right)4 $
$ \Rightarrow {{\text{f}}_{16}} = {{\text{f}}_1} + 60 $
But $ {{\text{f}}_1} = 252{\text{ Hz}} $
Therefore, $ {{\text{f}}_{16}} = 252 + 60 $
$ \Rightarrow {{\text{f}}_{16}} = 312{\text{ Hz}} $
Hene, the frequency of the $ 16th $ fork is $ 312{\text{ Hz}} $
The correct option is option C.
Note:
Beats are produced when the two waves of nearby frequencies are superimposed together. This will occur when the two waves travel in the same path. Beats also cause a periodic variation in the intensity of resultant waves. If the beat frequency is greater than $ {\text{10 Hz}} $ then it cannot be distinguished by human ears.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

