
$60{\text{ grams C}}{{\text{H}}_3}{\text{COOH}}$ and $46{\text{ grams }}{{\text{C}}_2}{{\text{H}}_5}{\text{OH}}$ react in $5{\text{ L}}$ flask to form $44{\text{ grams C}}{{\text{H}}_3}{\text{COO}}{{\text{C}}_2}{{\text{H}}_5}$ at equilibrium on taking $120{\text{ grams C}}{{\text{H}}_3}{\text{COOH}}$ and $46{\text{ grams }}{{\text{C}}_2}{{\text{H}}_5}{\text{OH}}$, ${\text{C}}{{\text{H}}_3}{\text{COO}}{{\text{C}}_2}{{\text{H}}_5}$ formed at equilibrium is
A) $44{\text{ g}}$
B) $20.33{\text{ g}}$
C) $22{\text{ g}}$
D) $58.66{\text{ g}}$
Answer
555.3k+ views
Hint: First calculate the equilibrium constant using the amount of the reactants and products given. Then in the second case calculate the concentration of ${\text{C}}{{\text{H}}_3}{\text{COO}}{{\text{C}}_2}{{\text{H}}_5}$ formed using the value of equilibrium constant.
Formulae Used:
${\text{Number of moles}} = \dfrac{{{\text{Mass}}}}{{{\text{Molar mass}}}}$
${\text{Molarity}} = \dfrac{{{\text{Number of moles}}}}{{{\text{Volume of solution}}}}$
Complete step by step answer:We know that the molar mass of ${\text{C}}{{\text{H}}_3}{\text{COOH}}$ is $60{\text{ g mo}}{{\text{l}}^{ - 1}}$, the molar mass of ${{\text{C}}_2}{{\text{H}}_5}{\text{OH}}$ is $46{\text{ g mo}}{{\text{l}}^{ - 1}}$ and the molar mass of ${\text{C}}{{\text{H}}_3}{\text{COO}}{{\text{C}}_2}{{\text{H}}_5}$ is $88{\text{ g mo}}{{\text{l}}^{ - 1}}$.
Calculate the initial number of moles of ${\text{C}}{{\text{H}}_3}{\text{COOH}}$ using the equation as follows:
${\text{Number of moles}} = \dfrac{{{\text{Mass}}}}{{{\text{Molar mass}}}}$
${\text{Number of moles of C}}{{\text{H}}_3}{\text{COOH}} = \dfrac{{{\text{60 g}}}}{{{\text{60 g mo}}{{\text{l}}^{ - 1}}}} = 1{\text{ mol}}$
Calculate the initial molar concentration of ${\text{C}}{{\text{H}}_3}{\text{COOH}}$ using the equation as follows:
${\text{Molarity}} = \dfrac{{{\text{Number of moles}}}}{{{\text{Volume of solution}}}}$
${\text{Molarity of C}}{{\text{H}}_3}{\text{COOH}} = \dfrac{{{\text{1 mol}}}}{{{\text{5 L}}}} = 0.2{\text{ mol }}{{\text{L}}^{ - 1}}$
Calculate the initial number of moles of ${{\text{C}}_2}{{\text{H}}_5}{\text{OH}}$ using the equation as follows:
${\text{Number of moles}} = \dfrac{{{\text{Mass}}}}{{{\text{Molar mass}}}}$
${\text{Number of moles of }}{{\text{C}}_2}{{\text{H}}_5}{\text{OH}} = \dfrac{{{\text{46 g}}}}{{{\text{46 g mo}}{{\text{l}}^{ - 1}}}} = 1{\text{ mol}}$
Calculate the initial molar concentration of ${{\text{C}}_2}{{\text{H}}_5}{\text{OH}}$ using the equation as follows:
${\text{Molarity}} = \dfrac{{{\text{Number of moles}}}}{{{\text{Volume of solution}}}}$
${\text{Molarity of }}{{\text{C}}_2}{{\text{H}}_5}{\text{OH}} = \dfrac{{{\text{1 mol}}}}{{{\text{5 L}}}} = 0.2{\text{ mol }}{{\text{L}}^{ - 1}}$
Calculate the number of moles of ${\text{C}}{{\text{H}}_3}{\text{COO}}{{\text{C}}_2}{{\text{H}}_5}$ at equilibrium using the equation as follows:
${\text{Number of moles}} = \dfrac{{{\text{Mass}}}}{{{\text{Molar mass}}}}$
${\text{Number of moles of C}}{{\text{H}}_3}{\text{COO}}{{\text{C}}_2}{{\text{H}}_5} = \dfrac{{{\text{44 g}}}}{{{\text{88 g mo}}{{\text{l}}^{ - 1}}}} = 0.5{\text{ mol}}$
Calculate the molar concentration of ${\text{C}}{{\text{H}}_3}{\text{COO}}{{\text{C}}_2}{{\text{H}}_5}$ at equilibrium using the equation as follows:
${\text{Molarity}} = \dfrac{{{\text{Number of moles}}}}{{{\text{Volume of solution}}}}$
${\text{Molarity of C}}{{\text{H}}_3}{\text{COO}}{{\text{C}}_2}{{\text{H}}_5} = \dfrac{{{\text{0}}{\text{.5 mol}}}}{{{\text{5 L}}}} = 0.1{\text{ mol }}{{\text{L}}^{ - 1}}$
The reaction of ${\text{C}}{{\text{H}}_3}{\text{COOH}}$ with ${{\text{C}}_2}{{\text{H}}_5}{\text{OH}}$ to produce ${\text{C}}{{\text{H}}_3}{\text{COO}}{{\text{C}}_2}{{\text{H}}_5}$ is as follows:
${\text{C}}{{\text{H}}_3}{\text{COOH}} + {{\text{C}}_2}{{\text{H}}_5}{\text{OH}} \to {\text{C}}{{\text{H}}_3}{\text{COO}}{{\text{C}}_2}{{\text{H}}_5} + {{\text{H}}_2}{\text{O}}$
Initially there are $0.2{\text{ mol }}{{\text{L}}^{ - 1}}$ of ${\text{C}}{{\text{H}}_3}{\text{COOH}}$ and $0.2{\text{ mol }}{{\text{L}}^{ - 1}}$ of ${{\text{C}}_2}{{\text{H}}_5}{\text{OH}}$.
From the reaction, we can see that one mole of ${\text{C}}{{\text{H}}_3}{\text{COOH}}$ reacts with one mole of ${{\text{C}}_2}{{\text{H}}_5}{\text{OH}}$ to produce one mole of ${\text{C}}{{\text{H}}_3}{\text{COO}}{{\text{C}}_2}{{\text{H}}_5}$.
At equilibrium $0.1{\text{ mol }}{{\text{L}}^{ - 1}}$ of ${\text{C}}{{\text{H}}_3}{\text{COO}}{{\text{C}}_2}{{\text{H}}_5}$ are produced. Thus, at equilibrium to produce $0.1{\text{ mol }}{{\text{L}}^{ - 1}}$ of ${\text{C}}{{\text{H}}_3}{\text{COO}}{{\text{C}}_2}{{\text{H}}_5}$we require $\left( {0.2 - 0.1} \right){\text{ mol }}{{\text{L}}^{ - 1}} = 0.1{\text{ mol }}{{\text{L}}^{ - 1}}$ of ${\text{C}}{{\text{H}}_3}{\text{COOH}}$ and $\left( {0.2 - 0.1} \right){\text{ mol }}{{\text{L}}^{ - 1}} = 0.1{\text{ mol }}{{\text{L}}^{ - 1}}$ of ${{\text{C}}_2}{{\text{H}}_5}{\text{OH}}$.
Thus, the equation for equilibrium constant is as follows:
$K = \dfrac{{{\text{[C}}{{\text{H}}_3}{\text{COO}}{{\text{C}}_2}{{\text{H}}_5}{\text{][}}{{\text{H}}_2}{\text{O]}}}}{{{\text{[C}}{{\text{H}}_3}{\text{COOH][}}{{\text{C}}_2}{{\text{H}}_5}{\text{OH}}]}}$
$K = \dfrac{{0.1 \times 0.1}}{{0.1 \times 0.1}}$
$K = 1$
In the second case,
Calculate the initial number of moles of ${\text{C}}{{\text{H}}_3}{\text{COOH}}$ using the equation as follows:
${\text{Number of moles}} = \dfrac{{{\text{Mass}}}}{{{\text{Molar mass}}}}$
${\text{Number of moles of C}}{{\text{H}}_3}{\text{COOH}} = \dfrac{{{\text{120 g}}}}{{{\text{60 g mo}}{{\text{l}}^{ - 1}}}} = 2{\text{ mol}}$
Calculate the initial molar concentration of ${\text{C}}{{\text{H}}_3}{\text{COOH}}$ using the equation as follows:
${\text{Molarity}} = \dfrac{{{\text{Number of moles}}}}{{{\text{Volume of solution}}}}$
${\text{Molarity of C}}{{\text{H}}_3}{\text{COOH}} = \dfrac{{{\text{2 mol}}}}{{{\text{5 L}}}} = 0.4{\text{ mol }}{{\text{L}}^{ - 1}}$
Calculate the initial number of moles of ${{\text{C}}_2}{{\text{H}}_5}{\text{OH}}$ using the equation as follows:
${\text{Number of moles}} = \dfrac{{{\text{Mass}}}}{{{\text{Molar mass}}}}$
${\text{Number of moles of }}{{\text{C}}_2}{{\text{H}}_5}{\text{OH}} = \dfrac{{{\text{46 g}}}}{{{\text{46 g mo}}{{\text{l}}^{ - 1}}}} = 1{\text{ mol}}$
Calculate the initial molar concentration of ${{\text{C}}_2}{{\text{H}}_5}{\text{OH}}$ using the equation as follows:
${\text{Molarity}} = \dfrac{{{\text{Number of moles}}}}{{{\text{Volume of solution}}}}$
${\text{Molarity of }}{{\text{C}}_2}{{\text{H}}_5}{\text{OH}} = \dfrac{{{\text{1 mol}}}}{{{\text{5 L}}}} = 0.2{\text{ mol }}{{\text{L}}^{ - 1}}$
Initially there are $0.4{\text{ mol }}{{\text{L}}^{ - 1}}$ of ${\text{C}}{{\text{H}}_3}{\text{COOH}}$ and $0.2{\text{ mol }}{{\text{L}}^{ - 1}}$ of ${{\text{C}}_2}{{\text{H}}_5}{\text{OH}}$.
From the reaction, we can see that one mole of ${\text{C}}{{\text{H}}_3}{\text{COOH}}$ reacts with one mole of ${{\text{C}}_2}{{\text{H}}_5}{\text{OH}}$ to produce one mole of ${\text{C}}{{\text{H}}_3}{\text{COO}}{{\text{C}}_2}{{\text{H}}_5}$.
Consider that at equilibrium $x{\text{ mol }}{{\text{L}}^{ - 1}}$ of ${\text{C}}{{\text{H}}_3}{\text{COO}}{{\text{C}}_2}{{\text{H}}_5}$ are produced. Thus, at equilibrium to produce $x{\text{ mol }}{{\text{L}}^{ - 1}}$ of ${\text{C}}{{\text{H}}_3}{\text{COO}}{{\text{C}}_2}{{\text{H}}_5}$we require $\left( {0.4 - x} \right){\text{ mol }}{{\text{L}}^{ - 1}}$ of ${\text{C}}{{\text{H}}_3}{\text{COOH}}$ and $\left( {0.2 - x} \right){\text{ mol }}{{\text{L}}^{ - 1}}$ of ${{\text{C}}_2}{{\text{H}}_5}{\text{OH}}$.
Thus, the equation for equilibrium constant is as follows:
$K = \dfrac{{{\text{[C}}{{\text{H}}_3}{\text{COO}}{{\text{C}}_2}{{\text{H}}_5}{\text{][}}{{\text{H}}_2}{\text{O]}}}}{{{\text{[C}}{{\text{H}}_3}{\text{COOH][}}{{\text{C}}_2}{{\text{H}}_5}{\text{OH}}]}}$
$K = \dfrac{{{x^2}}}{{\left( {0.4 - x} \right)\left( {0.2 - x} \right)}} = 1$ …… ${\text{[C}}{{\text{H}}_3}{\text{COO}}{{\text{C}}_2}{{\text{H}}_5}{\text{]}} = {\text{[}}{{\text{H}}_2}{\text{O]}}$
${x^2} = \left( {0.4 - x} \right)\left( {0.2 - x} \right)$
${x^2} = 0.08 + {x^2} - 0.6x$
$0.6x = 0.08$
$x = \dfrac{{0.08}}{{0.6}}$
Thus, the number of moles of ${\text{C}}{{\text{H}}_3}{\text{COO}}{{\text{C}}_2}{{\text{H}}_5}$ $ = \dfrac{{0.08}}{{0.6}} \times 5 = 0.6666{\text{ mol}}$
Thus, mass of ${\text{C}}{{\text{H}}_3}{\text{COO}}{{\text{C}}_2}{{\text{H}}_5}$ $ = 0.6666 \times 88 = 58.66{\text{ g}}$
Thus, the mass of ${\text{C}}{{\text{H}}_3}{\text{COO}}{{\text{C}}_2}{{\text{H}}_5}$ formed at equilibrium is $58.66{\text{ g}}$.
Thus, the correct option is (D) $58.66{\text{ g}}$.
Note:Remember that the equilibrium constant expresses the relationship between the amounts of products and the amounts of reactants that are present at equilibrium in a reversible reaction. In simple words, equilibrium constant is the ratio of the concentration of products to the concentration of reactants.
Formulae Used:
${\text{Number of moles}} = \dfrac{{{\text{Mass}}}}{{{\text{Molar mass}}}}$
${\text{Molarity}} = \dfrac{{{\text{Number of moles}}}}{{{\text{Volume of solution}}}}$
Complete step by step answer:We know that the molar mass of ${\text{C}}{{\text{H}}_3}{\text{COOH}}$ is $60{\text{ g mo}}{{\text{l}}^{ - 1}}$, the molar mass of ${{\text{C}}_2}{{\text{H}}_5}{\text{OH}}$ is $46{\text{ g mo}}{{\text{l}}^{ - 1}}$ and the molar mass of ${\text{C}}{{\text{H}}_3}{\text{COO}}{{\text{C}}_2}{{\text{H}}_5}$ is $88{\text{ g mo}}{{\text{l}}^{ - 1}}$.
Calculate the initial number of moles of ${\text{C}}{{\text{H}}_3}{\text{COOH}}$ using the equation as follows:
${\text{Number of moles}} = \dfrac{{{\text{Mass}}}}{{{\text{Molar mass}}}}$
${\text{Number of moles of C}}{{\text{H}}_3}{\text{COOH}} = \dfrac{{{\text{60 g}}}}{{{\text{60 g mo}}{{\text{l}}^{ - 1}}}} = 1{\text{ mol}}$
Calculate the initial molar concentration of ${\text{C}}{{\text{H}}_3}{\text{COOH}}$ using the equation as follows:
${\text{Molarity}} = \dfrac{{{\text{Number of moles}}}}{{{\text{Volume of solution}}}}$
${\text{Molarity of C}}{{\text{H}}_3}{\text{COOH}} = \dfrac{{{\text{1 mol}}}}{{{\text{5 L}}}} = 0.2{\text{ mol }}{{\text{L}}^{ - 1}}$
Calculate the initial number of moles of ${{\text{C}}_2}{{\text{H}}_5}{\text{OH}}$ using the equation as follows:
${\text{Number of moles}} = \dfrac{{{\text{Mass}}}}{{{\text{Molar mass}}}}$
${\text{Number of moles of }}{{\text{C}}_2}{{\text{H}}_5}{\text{OH}} = \dfrac{{{\text{46 g}}}}{{{\text{46 g mo}}{{\text{l}}^{ - 1}}}} = 1{\text{ mol}}$
Calculate the initial molar concentration of ${{\text{C}}_2}{{\text{H}}_5}{\text{OH}}$ using the equation as follows:
${\text{Molarity}} = \dfrac{{{\text{Number of moles}}}}{{{\text{Volume of solution}}}}$
${\text{Molarity of }}{{\text{C}}_2}{{\text{H}}_5}{\text{OH}} = \dfrac{{{\text{1 mol}}}}{{{\text{5 L}}}} = 0.2{\text{ mol }}{{\text{L}}^{ - 1}}$
Calculate the number of moles of ${\text{C}}{{\text{H}}_3}{\text{COO}}{{\text{C}}_2}{{\text{H}}_5}$ at equilibrium using the equation as follows:
${\text{Number of moles}} = \dfrac{{{\text{Mass}}}}{{{\text{Molar mass}}}}$
${\text{Number of moles of C}}{{\text{H}}_3}{\text{COO}}{{\text{C}}_2}{{\text{H}}_5} = \dfrac{{{\text{44 g}}}}{{{\text{88 g mo}}{{\text{l}}^{ - 1}}}} = 0.5{\text{ mol}}$
Calculate the molar concentration of ${\text{C}}{{\text{H}}_3}{\text{COO}}{{\text{C}}_2}{{\text{H}}_5}$ at equilibrium using the equation as follows:
${\text{Molarity}} = \dfrac{{{\text{Number of moles}}}}{{{\text{Volume of solution}}}}$
${\text{Molarity of C}}{{\text{H}}_3}{\text{COO}}{{\text{C}}_2}{{\text{H}}_5} = \dfrac{{{\text{0}}{\text{.5 mol}}}}{{{\text{5 L}}}} = 0.1{\text{ mol }}{{\text{L}}^{ - 1}}$
The reaction of ${\text{C}}{{\text{H}}_3}{\text{COOH}}$ with ${{\text{C}}_2}{{\text{H}}_5}{\text{OH}}$ to produce ${\text{C}}{{\text{H}}_3}{\text{COO}}{{\text{C}}_2}{{\text{H}}_5}$ is as follows:
${\text{C}}{{\text{H}}_3}{\text{COOH}} + {{\text{C}}_2}{{\text{H}}_5}{\text{OH}} \to {\text{C}}{{\text{H}}_3}{\text{COO}}{{\text{C}}_2}{{\text{H}}_5} + {{\text{H}}_2}{\text{O}}$
Initially there are $0.2{\text{ mol }}{{\text{L}}^{ - 1}}$ of ${\text{C}}{{\text{H}}_3}{\text{COOH}}$ and $0.2{\text{ mol }}{{\text{L}}^{ - 1}}$ of ${{\text{C}}_2}{{\text{H}}_5}{\text{OH}}$.
From the reaction, we can see that one mole of ${\text{C}}{{\text{H}}_3}{\text{COOH}}$ reacts with one mole of ${{\text{C}}_2}{{\text{H}}_5}{\text{OH}}$ to produce one mole of ${\text{C}}{{\text{H}}_3}{\text{COO}}{{\text{C}}_2}{{\text{H}}_5}$.
At equilibrium $0.1{\text{ mol }}{{\text{L}}^{ - 1}}$ of ${\text{C}}{{\text{H}}_3}{\text{COO}}{{\text{C}}_2}{{\text{H}}_5}$ are produced. Thus, at equilibrium to produce $0.1{\text{ mol }}{{\text{L}}^{ - 1}}$ of ${\text{C}}{{\text{H}}_3}{\text{COO}}{{\text{C}}_2}{{\text{H}}_5}$we require $\left( {0.2 - 0.1} \right){\text{ mol }}{{\text{L}}^{ - 1}} = 0.1{\text{ mol }}{{\text{L}}^{ - 1}}$ of ${\text{C}}{{\text{H}}_3}{\text{COOH}}$ and $\left( {0.2 - 0.1} \right){\text{ mol }}{{\text{L}}^{ - 1}} = 0.1{\text{ mol }}{{\text{L}}^{ - 1}}$ of ${{\text{C}}_2}{{\text{H}}_5}{\text{OH}}$.
Thus, the equation for equilibrium constant is as follows:
$K = \dfrac{{{\text{[C}}{{\text{H}}_3}{\text{COO}}{{\text{C}}_2}{{\text{H}}_5}{\text{][}}{{\text{H}}_2}{\text{O]}}}}{{{\text{[C}}{{\text{H}}_3}{\text{COOH][}}{{\text{C}}_2}{{\text{H}}_5}{\text{OH}}]}}$
$K = \dfrac{{0.1 \times 0.1}}{{0.1 \times 0.1}}$
$K = 1$
In the second case,
Calculate the initial number of moles of ${\text{C}}{{\text{H}}_3}{\text{COOH}}$ using the equation as follows:
${\text{Number of moles}} = \dfrac{{{\text{Mass}}}}{{{\text{Molar mass}}}}$
${\text{Number of moles of C}}{{\text{H}}_3}{\text{COOH}} = \dfrac{{{\text{120 g}}}}{{{\text{60 g mo}}{{\text{l}}^{ - 1}}}} = 2{\text{ mol}}$
Calculate the initial molar concentration of ${\text{C}}{{\text{H}}_3}{\text{COOH}}$ using the equation as follows:
${\text{Molarity}} = \dfrac{{{\text{Number of moles}}}}{{{\text{Volume of solution}}}}$
${\text{Molarity of C}}{{\text{H}}_3}{\text{COOH}} = \dfrac{{{\text{2 mol}}}}{{{\text{5 L}}}} = 0.4{\text{ mol }}{{\text{L}}^{ - 1}}$
Calculate the initial number of moles of ${{\text{C}}_2}{{\text{H}}_5}{\text{OH}}$ using the equation as follows:
${\text{Number of moles}} = \dfrac{{{\text{Mass}}}}{{{\text{Molar mass}}}}$
${\text{Number of moles of }}{{\text{C}}_2}{{\text{H}}_5}{\text{OH}} = \dfrac{{{\text{46 g}}}}{{{\text{46 g mo}}{{\text{l}}^{ - 1}}}} = 1{\text{ mol}}$
Calculate the initial molar concentration of ${{\text{C}}_2}{{\text{H}}_5}{\text{OH}}$ using the equation as follows:
${\text{Molarity}} = \dfrac{{{\text{Number of moles}}}}{{{\text{Volume of solution}}}}$
${\text{Molarity of }}{{\text{C}}_2}{{\text{H}}_5}{\text{OH}} = \dfrac{{{\text{1 mol}}}}{{{\text{5 L}}}} = 0.2{\text{ mol }}{{\text{L}}^{ - 1}}$
Initially there are $0.4{\text{ mol }}{{\text{L}}^{ - 1}}$ of ${\text{C}}{{\text{H}}_3}{\text{COOH}}$ and $0.2{\text{ mol }}{{\text{L}}^{ - 1}}$ of ${{\text{C}}_2}{{\text{H}}_5}{\text{OH}}$.
From the reaction, we can see that one mole of ${\text{C}}{{\text{H}}_3}{\text{COOH}}$ reacts with one mole of ${{\text{C}}_2}{{\text{H}}_5}{\text{OH}}$ to produce one mole of ${\text{C}}{{\text{H}}_3}{\text{COO}}{{\text{C}}_2}{{\text{H}}_5}$.
Consider that at equilibrium $x{\text{ mol }}{{\text{L}}^{ - 1}}$ of ${\text{C}}{{\text{H}}_3}{\text{COO}}{{\text{C}}_2}{{\text{H}}_5}$ are produced. Thus, at equilibrium to produce $x{\text{ mol }}{{\text{L}}^{ - 1}}$ of ${\text{C}}{{\text{H}}_3}{\text{COO}}{{\text{C}}_2}{{\text{H}}_5}$we require $\left( {0.4 - x} \right){\text{ mol }}{{\text{L}}^{ - 1}}$ of ${\text{C}}{{\text{H}}_3}{\text{COOH}}$ and $\left( {0.2 - x} \right){\text{ mol }}{{\text{L}}^{ - 1}}$ of ${{\text{C}}_2}{{\text{H}}_5}{\text{OH}}$.
Thus, the equation for equilibrium constant is as follows:
$K = \dfrac{{{\text{[C}}{{\text{H}}_3}{\text{COO}}{{\text{C}}_2}{{\text{H}}_5}{\text{][}}{{\text{H}}_2}{\text{O]}}}}{{{\text{[C}}{{\text{H}}_3}{\text{COOH][}}{{\text{C}}_2}{{\text{H}}_5}{\text{OH}}]}}$
$K = \dfrac{{{x^2}}}{{\left( {0.4 - x} \right)\left( {0.2 - x} \right)}} = 1$ …… ${\text{[C}}{{\text{H}}_3}{\text{COO}}{{\text{C}}_2}{{\text{H}}_5}{\text{]}} = {\text{[}}{{\text{H}}_2}{\text{O]}}$
${x^2} = \left( {0.4 - x} \right)\left( {0.2 - x} \right)$
${x^2} = 0.08 + {x^2} - 0.6x$
$0.6x = 0.08$
$x = \dfrac{{0.08}}{{0.6}}$
Thus, the number of moles of ${\text{C}}{{\text{H}}_3}{\text{COO}}{{\text{C}}_2}{{\text{H}}_5}$ $ = \dfrac{{0.08}}{{0.6}} \times 5 = 0.6666{\text{ mol}}$
Thus, mass of ${\text{C}}{{\text{H}}_3}{\text{COO}}{{\text{C}}_2}{{\text{H}}_5}$ $ = 0.6666 \times 88 = 58.66{\text{ g}}$
Thus, the mass of ${\text{C}}{{\text{H}}_3}{\text{COO}}{{\text{C}}_2}{{\text{H}}_5}$ formed at equilibrium is $58.66{\text{ g}}$.
Thus, the correct option is (D) $58.66{\text{ g}}$.
Note:Remember that the equilibrium constant expresses the relationship between the amounts of products and the amounts of reactants that are present at equilibrium in a reversible reaction. In simple words, equilibrium constant is the ratio of the concentration of products to the concentration of reactants.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

