
5L of an alkane requires 25L of oxygen for its complete combustion. If all volumes are measured at constant temperature and pressure, the alkane is:
a.) Butane
b.) Isobutane
c.) Propane
d.) Ethane
Answer
582.9k+ views
Hint: Try to recall the standard reaction for the combustion of alkane. The combustion reaction of alkane forms the product carbon dioxide and water. Now you can easily find the alkane and get the answer to this question.
Complete step by step answer:
We can write the reaction for the combustion of alkane as,
$C_{ n }H_{ 2n+2 }\quad +\quad (\dfrac { 3n+1 }{ 2 } )O_{ 2 }\quad \rightarrow \quad nCO_{ 2 }\quad +\quad (n+1)H_{ 2 }O$
From the above reaction, we can determine that,
No. of moles of alkane = 1
No. of moles of oxygen = $(\dfrac { 3n+1 }{ 2 } )$
Now, from the ideal gas equation, we know
PV = nRT
At the same temperature and pressure,
V ∝ n
Or we can write this as,
V(alkane)n(oxygen) = V(oxygen)n(alkane) …….(I)
Now we have given the following in the question,
The volume of alkane = 5L
The volume of oxygen = 25L
From equation(I), we have
5×$(\dfrac { 3n+1 }{ 2 } )$ = 25×1
⇒3n+1=5×2
⇒3n=10−1
⇒n=3
Thus the alkane is $C_{ 3 }H_{ 2×3+2 }\quad =\quad C_{ 3 }H_{ 8 }$
That means this is propane.
We can write the combustion reaction of propane like this,
$C_{ 3 }H_{ 8 }\quad +\quad 5O_{ 2 }\quad \rightarrow \quad 3CO_{ 2 }\quad +\quad 4H_{ 2 }O$
Here, 1 L of propane required 5 L of oxygen to completely burn. Hence, 5 L of propane requires 5×5 = 25 L oxygen for complete combustion.
Therefore, the correct answer to this question is option B.
Note: We should be also familiar with the general equation of combustion for any hydrocarbon. Let $C_{ x }H_{ y }$ represent our hydrocarbon. It doesn’t matter whether it is an alk-ane, -ene, or -yne. The equation for the combustion reaction will be:
$C_{ x }H_{ y }\quad +\quad (x\quad +\dfrac { y }{ 4 } )O_{ 2 }\quad \rightarrow \quad xCO_{ 2 }\quad +\quad \dfrac { y }{ 2 } H_{ 2 }O$
Here x, is the number of carbons and y, is the number of hydrogens present in the hydrocarbon.
Complete step by step answer:
We can write the reaction for the combustion of alkane as,
$C_{ n }H_{ 2n+2 }\quad +\quad (\dfrac { 3n+1 }{ 2 } )O_{ 2 }\quad \rightarrow \quad nCO_{ 2 }\quad +\quad (n+1)H_{ 2 }O$
From the above reaction, we can determine that,
No. of moles of alkane = 1
No. of moles of oxygen = $(\dfrac { 3n+1 }{ 2 } )$
Now, from the ideal gas equation, we know
PV = nRT
At the same temperature and pressure,
V ∝ n
Or we can write this as,
V(alkane)n(oxygen) = V(oxygen)n(alkane) …….(I)
Now we have given the following in the question,
The volume of alkane = 5L
The volume of oxygen = 25L
From equation(I), we have
5×$(\dfrac { 3n+1 }{ 2 } )$ = 25×1
⇒3n+1=5×2
⇒3n=10−1
⇒n=3
Thus the alkane is $C_{ 3 }H_{ 2×3+2 }\quad =\quad C_{ 3 }H_{ 8 }$
That means this is propane.
We can write the combustion reaction of propane like this,
$C_{ 3 }H_{ 8 }\quad +\quad 5O_{ 2 }\quad \rightarrow \quad 3CO_{ 2 }\quad +\quad 4H_{ 2 }O$
Here, 1 L of propane required 5 L of oxygen to completely burn. Hence, 5 L of propane requires 5×5 = 25 L oxygen for complete combustion.
Therefore, the correct answer to this question is option B.
Note: We should be also familiar with the general equation of combustion for any hydrocarbon. Let $C_{ x }H_{ y }$ represent our hydrocarbon. It doesn’t matter whether it is an alk-ane, -ene, or -yne. The equation for the combustion reaction will be:
$C_{ x }H_{ y }\quad +\quad (x\quad +\dfrac { y }{ 4 } )O_{ 2 }\quad \rightarrow \quad xCO_{ 2 }\quad +\quad \dfrac { y }{ 2 } H_{ 2 }O$
Here x, is the number of carbons and y, is the number of hydrogens present in the hydrocarbon.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Trending doubts
What is the difference between lightdependent and lightindependent class 11 biology CBSE

How would you explain how the lightindependent reaction class 11 biology CBSE

How are lightdependent and lightindependent reactions class 11 biology CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

10 examples of friction in our daily life

