
How do you $4\cos \left( {x + \dfrac{\pi }{3}} \right)$?
Answer
547.5k+ views
Hint: In this question we have to simplify the expression which is a trigonometric angle, to do this we will make use of the sum of angle identities in the trigonometry which is given by $\cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B$ and trigonometric ratios, i.e., $\cos \dfrac{\pi }{3} = \dfrac{1}{2}$and $\sin \dfrac{\pi }{3} = \dfrac{{\sqrt 3 }}{2}$, then substitute the values given in the identity, and then simplify the expression to get the required simplified result.
Complete step by step answer:
Given function is $4\cos \left( {x + \dfrac{\pi }{3}} \right)$,
Now using the sum angle identity which is given by $\cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B$,
Here \[A = x\] and \[B = \dfrac{\pi }{3}\] by substituting the values in the identity we get,
\[ \Rightarrow 4\cos \left( {x + \dfrac{\pi }{3}} \right) = 4\left[ {\cos x\cos \dfrac{\pi }{3} - \sin x\sin \dfrac{\pi }{3}} \right]\],
Now we know that $\cos \dfrac{\pi }{3} = \dfrac{1}{2}$and $\sin \dfrac{\pi }{3} = \dfrac{{\sqrt 3 }}{2}$, and by substituting the values in the above expression we get,
\[ \Rightarrow 4\cos \left( {x + \dfrac{\pi }{3}} \right) = 4\left[ {\cos x\dfrac{1}{2} - \sin x\dfrac{{\sqrt 3 }}{2}} \right]\],
Now simplifying the expression by taking the denominator outside the brackets, we get,
\[ \Rightarrow 4\cos \left( {x + \dfrac{\pi }{3}} \right) = \dfrac{4}{2}\left[ {\cos x - \sqrt 3 \sin x} \right]\],
Now simplifying we get,
\[ \Rightarrow 4\cos \left( {x + \dfrac{\pi }{3}} \right) = 2\left[ {\cos x - \sqrt 3 \sin x} \right]\].
So, the simplified form is \[2\left[ {\cos x - \sqrt 3 \sin x} \right]\].
The simplified form of the given expression $4\cos \left( {x + \dfrac{\pi }{3}} \right)$ will be equal to \[2\left[ {\cos x - \sqrt 3 \sin x} \right]\].
Note: Angle sum identities and angle difference identities can be used to find the function values of any angles however, the most practical use is to find exact values of an angle that can be written as a sum or difference using the familiar values for the sine, cosine and tangent of the \[{30^o}\], \[{45^o}\], \[\] and \[{90^o}\] angles and their multiples. Some important formulas are:
\[\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B\],
\[\cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B\],
\[\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\],
\[\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B\],
\[\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B\],
\[\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}\],
To find a cosecant, secant or cotangent function you change the expression to one of the three basic functions, do the necessary calculations. Then use the reciprocal identity again to change the answer back to the original identity.
Complete step by step answer:
Given function is $4\cos \left( {x + \dfrac{\pi }{3}} \right)$,
Now using the sum angle identity which is given by $\cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B$,
Here \[A = x\] and \[B = \dfrac{\pi }{3}\] by substituting the values in the identity we get,
\[ \Rightarrow 4\cos \left( {x + \dfrac{\pi }{3}} \right) = 4\left[ {\cos x\cos \dfrac{\pi }{3} - \sin x\sin \dfrac{\pi }{3}} \right]\],
Now we know that $\cos \dfrac{\pi }{3} = \dfrac{1}{2}$and $\sin \dfrac{\pi }{3} = \dfrac{{\sqrt 3 }}{2}$, and by substituting the values in the above expression we get,
\[ \Rightarrow 4\cos \left( {x + \dfrac{\pi }{3}} \right) = 4\left[ {\cos x\dfrac{1}{2} - \sin x\dfrac{{\sqrt 3 }}{2}} \right]\],
Now simplifying the expression by taking the denominator outside the brackets, we get,
\[ \Rightarrow 4\cos \left( {x + \dfrac{\pi }{3}} \right) = \dfrac{4}{2}\left[ {\cos x - \sqrt 3 \sin x} \right]\],
Now simplifying we get,
\[ \Rightarrow 4\cos \left( {x + \dfrac{\pi }{3}} \right) = 2\left[ {\cos x - \sqrt 3 \sin x} \right]\].
So, the simplified form is \[2\left[ {\cos x - \sqrt 3 \sin x} \right]\].
The simplified form of the given expression $4\cos \left( {x + \dfrac{\pi }{3}} \right)$ will be equal to \[2\left[ {\cos x - \sqrt 3 \sin x} \right]\].
Note: Angle sum identities and angle difference identities can be used to find the function values of any angles however, the most practical use is to find exact values of an angle that can be written as a sum or difference using the familiar values for the sine, cosine and tangent of the \[{30^o}\], \[{45^o}\], \[\] and \[{90^o}\] angles and their multiples. Some important formulas are:
\[\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B\],
\[\cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B\],
\[\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\],
\[\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B\],
\[\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B\],
\[\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}\],
To find a cosecant, secant or cotangent function you change the expression to one of the three basic functions, do the necessary calculations. Then use the reciprocal identity again to change the answer back to the original identity.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

