
${\text{3}}{\text{.2}}$mole of HI were heated in a sealed bulb at ${\text{44}}{{\text{4}}^{\text{o}}}{\text{C}}$ till the equilibrium state was reached. Its degree of dissociation was found to be ${\text{20}}$%. Calculate the number of moles of hydrogen iodide present at equilibrium point and determine the equilibrium constant.
Answer
552.9k+ views
Hint: First we will determine the moles of HI dissociated and then the equilibrium concentrations for each of the reactant and product of the reaction. Then we will write equilibrium constant expressions. By substituting the equilibrium concentration we will determine the equilibrium constant.
Complete step-by-step answer:
The formula to determine the degree of dissociation is as follows:
Degree of dissociation = moles dissociated / moles present at initial
On substituting ${\text{3}}{\text{.2}}$mole for initial concentration of HI and ${\text{20}}$% for Degree of dissociation,
$\dfrac{{{\text{20}}}}{{{\text{100}}}}\, = \,\dfrac{{{\text{moles}}\,{\text{dissociated}}}}{{{\text{3}}{\text{.2}}}}$
${\text{moles}}\,{\text{dissociated}}\, = \,\dfrac{{{\text{20}}}}{{{\text{100}}}}\,\, \times 3.2$
${\text{moles}}\,{\text{dissociated}}\, = \,0.64$
So, the initial amount of the HI was $3.2$ moles out of which $0.64$ moles dissociates.
The balanced equation for the dissociation of HI is as follows:
${\text{2HI}}\, \to \,{{\text{H}}_{\text{2}}}{\text{(g)}}\,{\text{ + }}\,\,{{\text{I}}_{\text{2}}}{\text{(g)}}$
Now we will determine the change in concentration of each reactant and product and their equilibrium concentration as follows:
We know from the above balanced equation that two moles of HI giving one mole of hydrogen and one mole of iodine so, $0.64$ moles will give,
${\text{2}}\,{\text{mol}}\,{\text{HI}}\,\,{\text{ = }}\,\,{\text{1}}\,{\text{mol}}\,\,{{\text{H}}_{\text{2}}}$
${\text{0}}{\text{.64}}\,\,{\text{mol}}\,{\text{HI}}\,\,{\text{ = }}\,\,0.32\,\,{\text{mol}}\,\,{{\text{H}}_{\text{2}}}$
And
${\text{2}}\,{\text{mol}}\,{\text{HI}}\,\,{\text{ = }}\,\,{\text{1}}\,{\text{mol}}\,\,{{\text{I}}_{\text{2}}}$
${\text{0}}{\text{.64}}\,\,{\text{mol}}\,{\text{HI}}\,\,{\text{ = }}\,\,0.32\,\,{\text{mol}}\,\,{{\text{I}}_{\text{2}}}$
So, the concentration of HI is changing from $3.2$ moles to $0.64$ moles. The concentration of products is changing by $0.32$ moles so, now we can prepare the ICE chart as follows:
${\text{2HI}}\, \to \,{{\text{H}}_{\text{2}}}{\text{(g)}}\,{\text{ + }}\,\,{{\text{I}}_{\text{2}}}{\text{(g)}}$
Initial conc. $3.2\,\,\,\,\,\,\,\,0\,\,\,\,\,\,\,0$
Change $0.64\,\,\,\,\,\,\,\,0.32\,\,\,\,\,\,\,0.32$
Equi. conc.$\left( {3.2 - 0.64} \right)\,\,\,\,\,\,\,\,0.32\,\,\,\,\,\,\,0.32$
So, the equilibrium concentration of HI is,
$3.2 - 0.64\, = \,2.56$
So, the equilibrium concentration of HI is $2.56$moles.
Now we will write the equilibrium constant expression for the reaction as follows:
${\text{2HI}}\, \to \,{{\text{H}}_{\text{2}}}{\text{(g)}}\,{\text{ + }}\,\,{{\text{I}}_{\text{2}}}{\text{(g)}}$
The equilibrium constant expression for the above reaction is as follows:
${{\text{k}}_{{\text{equi}}}}{\text{ = }}\,\dfrac{{\left[ {{{\text{H}}_2}} \right]\,\,\left[ {{{\text{I}}_2}} \right]}}{{{{\left[ {{\text{HI}}} \right]}^{\text{2}}}}}\,$
On substituting equilibrium concentration of each,
${{\text{k}}_{{\text{equi}}}}{\text{ = }}\,\dfrac{{\left[ {0.32} \right]\,\,\left[ {0.32} \right]}}{{{{\left[ {2.56} \right]}^{\text{2}}}}}\,$
${{\text{k}}_{{\text{equi}}}}{\text{ = }}\,\dfrac{{\left[ {0.1024} \right]\,\,}}{{\left[ {6.5536} \right]}}\,$
${{\text{k}}_{{\text{equi}}}}{\text{ = }}\,0.0156\,$
So, the equilibrium constant is $0.0156$.
Therefore, the number of moles of hydrogen iodide present at equilibrium point is $2.56$and the equilibrium constant is $0.0156$.
Note: When we determine the change in concentration then we multiply the change with the stoichiometry of the product and divide the change by the stoichiometry of reactant whereas the change in concentration of reactant is multiplied with stoichiometry of reactant only. Degree of dissociation tells how much amount from initial is undergoing dissociation.
Complete step-by-step answer:
The formula to determine the degree of dissociation is as follows:
Degree of dissociation = moles dissociated / moles present at initial
On substituting ${\text{3}}{\text{.2}}$mole for initial concentration of HI and ${\text{20}}$% for Degree of dissociation,
$\dfrac{{{\text{20}}}}{{{\text{100}}}}\, = \,\dfrac{{{\text{moles}}\,{\text{dissociated}}}}{{{\text{3}}{\text{.2}}}}$
${\text{moles}}\,{\text{dissociated}}\, = \,\dfrac{{{\text{20}}}}{{{\text{100}}}}\,\, \times 3.2$
${\text{moles}}\,{\text{dissociated}}\, = \,0.64$
So, the initial amount of the HI was $3.2$ moles out of which $0.64$ moles dissociates.
The balanced equation for the dissociation of HI is as follows:
${\text{2HI}}\, \to \,{{\text{H}}_{\text{2}}}{\text{(g)}}\,{\text{ + }}\,\,{{\text{I}}_{\text{2}}}{\text{(g)}}$
Now we will determine the change in concentration of each reactant and product and their equilibrium concentration as follows:
We know from the above balanced equation that two moles of HI giving one mole of hydrogen and one mole of iodine so, $0.64$ moles will give,
${\text{2}}\,{\text{mol}}\,{\text{HI}}\,\,{\text{ = }}\,\,{\text{1}}\,{\text{mol}}\,\,{{\text{H}}_{\text{2}}}$
${\text{0}}{\text{.64}}\,\,{\text{mol}}\,{\text{HI}}\,\,{\text{ = }}\,\,0.32\,\,{\text{mol}}\,\,{{\text{H}}_{\text{2}}}$
And
${\text{2}}\,{\text{mol}}\,{\text{HI}}\,\,{\text{ = }}\,\,{\text{1}}\,{\text{mol}}\,\,{{\text{I}}_{\text{2}}}$
${\text{0}}{\text{.64}}\,\,{\text{mol}}\,{\text{HI}}\,\,{\text{ = }}\,\,0.32\,\,{\text{mol}}\,\,{{\text{I}}_{\text{2}}}$
So, the concentration of HI is changing from $3.2$ moles to $0.64$ moles. The concentration of products is changing by $0.32$ moles so, now we can prepare the ICE chart as follows:
${\text{2HI}}\, \to \,{{\text{H}}_{\text{2}}}{\text{(g)}}\,{\text{ + }}\,\,{{\text{I}}_{\text{2}}}{\text{(g)}}$
Initial conc. $3.2\,\,\,\,\,\,\,\,0\,\,\,\,\,\,\,0$
Change $0.64\,\,\,\,\,\,\,\,0.32\,\,\,\,\,\,\,0.32$
Equi. conc.$\left( {3.2 - 0.64} \right)\,\,\,\,\,\,\,\,0.32\,\,\,\,\,\,\,0.32$
So, the equilibrium concentration of HI is,
$3.2 - 0.64\, = \,2.56$
So, the equilibrium concentration of HI is $2.56$moles.
Now we will write the equilibrium constant expression for the reaction as follows:
${\text{2HI}}\, \to \,{{\text{H}}_{\text{2}}}{\text{(g)}}\,{\text{ + }}\,\,{{\text{I}}_{\text{2}}}{\text{(g)}}$
The equilibrium constant expression for the above reaction is as follows:
${{\text{k}}_{{\text{equi}}}}{\text{ = }}\,\dfrac{{\left[ {{{\text{H}}_2}} \right]\,\,\left[ {{{\text{I}}_2}} \right]}}{{{{\left[ {{\text{HI}}} \right]}^{\text{2}}}}}\,$
On substituting equilibrium concentration of each,
${{\text{k}}_{{\text{equi}}}}{\text{ = }}\,\dfrac{{\left[ {0.32} \right]\,\,\left[ {0.32} \right]}}{{{{\left[ {2.56} \right]}^{\text{2}}}}}\,$
${{\text{k}}_{{\text{equi}}}}{\text{ = }}\,\dfrac{{\left[ {0.1024} \right]\,\,}}{{\left[ {6.5536} \right]}}\,$
${{\text{k}}_{{\text{equi}}}}{\text{ = }}\,0.0156\,$
So, the equilibrium constant is $0.0156$.
Therefore, the number of moles of hydrogen iodide present at equilibrium point is $2.56$and the equilibrium constant is $0.0156$.
Note: When we determine the change in concentration then we multiply the change with the stoichiometry of the product and divide the change by the stoichiometry of reactant whereas the change in concentration of reactant is multiplied with stoichiometry of reactant only. Degree of dissociation tells how much amount from initial is undergoing dissociation.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Discuss the various forms of bacteria class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

